Fixed point theorems and Hardy classes
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 95-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A survey of several recent applications of fixed point theorems for multivalued maps to interpolation of Hardy classes and to certain topics related to the corona theorem.
@article{ZNSL_2022_512_a6,
     author = {S. V. Kislyakov and A. A. Skvortsov},
     title = {Fixed point theorems and {Hardy} classes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--115},
     year = {2022},
     volume = {512},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a6/}
}
TY  - JOUR
AU  - S. V. Kislyakov
AU  - A. A. Skvortsov
TI  - Fixed point theorems and Hardy classes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 95
EP  - 115
VL  - 512
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a6/
LA  - ru
ID  - ZNSL_2022_512_a6
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%A A. A. Skvortsov
%T Fixed point theorems and Hardy classes
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 95-115
%V 512
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a6/
%G ru
%F ZNSL_2022_512_a6
S. V. Kislyakov; A. A. Skvortsov. Fixed point theorems and Hardy classes. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 95-115. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a6/

[1] S. Kakutani, “A generalization of Brouwer's fixed point theorem”, Duke Math. J., 8 (1941), 457–459 | DOI | MR

[2] Ky Fan, “Fixed point and minimax theorems in locally convex topological linear spaces”, Proc. Natl. Acad. Sci. USA, 38 (1952), 121–126 | DOI | MR

[3] I. Glicksberg, “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium”, Proc. Amer. Math. Soc., 3:1 (1952), 170–174 | MR

[4] M. J. Powers, “Lefschetz fixed point theorems and a new class of multi-valued maps”, Pac. J. Math., 42:I (1972), 211–220 | DOI | MR

[5] S. Park, “A unified fixed point theory of multimaps on topological vector spaces”, J. Korean Math. Soc., 35:4 (1998), 803–829 | MR

[6] S. Park, “A unified fixed point theory in generalized convex spaces”, Acta Mathematica Sinica, 23:8 (2007), 1509–1526 | DOI | MR

[7] D. V. Rutskii, “Veschestvennaya interpolyatsiya prostranstv tipa Khardi: anons i nekotorye zamechaniya”, Zap. nauchn. semin. POMI, 480, 2019, 70–190

[8] D. V. Rutsky, “Real interpolation of Hardy-type spaces and BMO-regularity”, J. Fourier analysis and applications, 26:4 (2020), 61 | DOI | MR

[9] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135

[10] S. V. Kislyakov, “On BMO-regular couples of lattices of measurable functions”, Stud. Math., 159:2 (2003), 277–289 | DOI | MR

[11] D. V. Rutskii, “Zamechaniya o VMO-regulyarnosti i AK-ustoichivosti”, Zap. nauchn. semin. POMI, 376, 2010, 116–166

[12] D. V. Rutskii, “VMO-regulyarnost v reshetkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Algebra i analiz, 23:2 (2011), 248–295 | MR

[13] D. V. Rutskii, “Vektornoznachnaya ogranichennost operatorov garmonicheskogo analiza”, Algebra i analiz, 28:6 (2016), 91–117 | MR

[14] I. K. Zlotnikov, “Zadacha ob idealakh algebry $H^{\infty}$ v sluchae nekotorykh prostranstv posledovatelnostei”, Algebra i analiz, 29:5 (2017), 51–67

[15] D. V. Rutsky, “Corona problem with data in ideal spaces of sequences”, Archiv der Mathematik, 108 (2017), 609–619 | DOI | MR

[16] S. V. Kislyakov, D. V. Rutskii, “Neskolko zamechanii k teoreme o korone”, Algebra i analiz, 24:2 (2012), 171–191