On locally concave functions on simplest nonconvex domain
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 40-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that certain Bellman functions of several variables are minimal locally concave functions. This generalizes earlier results about Bellman functions of two variables.
@article{ZNSL_2022_512_a4,
     author = {P. B. Zatitskiy and D. M. Stolyarov},
     title = {On locally concave functions on simplest nonconvex domain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--87},
     year = {2022},
     volume = {512},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a4/}
}
TY  - JOUR
AU  - P. B. Zatitskiy
AU  - D. M. Stolyarov
TI  - On locally concave functions on simplest nonconvex domain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 40
EP  - 87
VL  - 512
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a4/
LA  - ru
ID  - ZNSL_2022_512_a4
ER  - 
%0 Journal Article
%A P. B. Zatitskiy
%A D. M. Stolyarov
%T On locally concave functions on simplest nonconvex domain
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 40-87
%V 512
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a4/
%G ru
%F ZNSL_2022_512_a4
P. B. Zatitskiy; D. M. Stolyarov. On locally concave functions on simplest nonconvex domain. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 40-87. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a4/

[1] V. I. Vasyunin, “Tochnaya konstanta v obratnom neravenstve Geldera dlya makenkhauptovskikh vesov”, Algebra i analiz, 15:1 (2003), 73–117

[2] V. I. Vasyunin, “Vzaimnye otsenki $l^p$-norm i funktsiya Bellmana”, Zap. nauchn. semin. POMI, 355, 2008, 81–138

[3] A. N. Shiryaev, Veroyatnost 2, MTsNMO, 2021

[4] D. Azagra, “Global and fine approximation of convex functions”, Proc. Lond. Math. Soc. (3), 107:4 (2013), 799–824 | DOI | MR

[5] D. Azagra, D. Stolyarov, Inner and outer smooth approximation of convex hypersurfaces. When is it possible?, arXiv: 2204.07498

[6] H. Brezis, L. Nirenberg, “Degree theory and BMO. I. Compact manifolds without boundaries”, Selecta Math., 1:2 (1995), 197–263 | DOI | MR

[7] E. Dobronravov, On a minimal locally concave function on a ring, in preparation

[8] B. Guan, “The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature”, Trans. Amer. Math. Soc., 350:12 (1998), 4955–4971 | DOI | MR

[9] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach spaces, v. I, Martingales and Littlewood–Paley theory, Springer, 2016 | MR

[10] P. Ivanishvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Sharp estimates of integral functionals on classes of functions with small mean oscillation”, C. R. Math. Acad. Sci. Paris, 350:11 (2012), 561–564 | DOI | MR

[11] P. Ivanishvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “On Bellman function for extremal problems in $\mathrm{BMO}$”, C. R. Math. Acad. Sci. Paris, 353:12 (2015), 1081–1085 | DOI | MR

[12] P. Ivanishvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Bellman function for extremal problems in $\mathrm{BMO}$”, Trans. Amer. Math. Soc., 368 (2016), 3415–3468 | DOI | MR

[13] P. Ivanishvili, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, Bellman function for extremal problems on $\mathrm{BMO}$ II: evolution, Mem. Amer. Math. Soc., 255, no. 1220, 2018 | MR

[14] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR

[15] B. Kirchheim, S. Müller, V. Šverák, “Studying nonlinear pde by geometry in matrix space”, Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003, 347–395 | DOI | MR

[16] A. Reznikov, “Sharp weak type estimates for weights in the class $A_{p_1,p_2}$”, Rev. Mat. Iberoam., 29:2 (2013), 433–478 | DOI | MR

[17] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, N.J., 1970 | MR

[18] L. Slavin, V. Vasyunin, “Sharp results in the integral form John–Nirenberg inequality”, Trans. Amer. Math. Soc., 363:8 (2011), 4135–4169 | DOI | MR

[19] L. Slavin, V. Vasyunin, “Sharp $L^p$ estimates on $\mathrm{BMO}$”, Indiana Univ. Math. J., 61:3 (2012), 1051–1110 | DOI | MR

[20] E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, 1993 | MR

[21] D. Stolyarov, V. Vasyunin, P. Zatitskiy, “Sharp multiplicative inequalities with BMO I”, J. Math. Anal. Appl., 492:2 (2020), 124479, 17 pp. | DOI | MR

[22] D. Stolyarov, P. Zatitskiy, “Sharp transference principle for BMO and $A_p$”, J. Funct. Anal., 281:6, 109085 | DOI | MR

[23] D. M. Stolyarov, P. B. Zatitskiy, “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273 | DOI | MR

[24] V. Vasyunin, A. Volberg, “Sharp constants in the classical weak form of the John–Nirenberg inequality”, Proc. Lond. Math. Soc., 108:6 (2014), 1417–1434 | DOI | MR

[25] V. Vasyunin, P. Zatitskiy, I. Zlotnikov, “Sharp multiplicative inequalities with BMO II”, J. Math. Anal. Appl., 515:2, 126430, arXiv: 2111.05565 | DOI | MR

[26] V. I. Vasyunin, The sharp constant in the John–Nirenberg inequality, PDMI preprints 20/2003 http://www.pdmi.ras.ru/preprint/2003/03-20.html