A remark to the Linnell theorems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 35-39
Cet article a éte moissonné depuis la source Math-Net.Ru
A short proof of Linnell's theorem is given for the case where the cell of the lattice has rational area.
@article{ZNSL_2022_512_a3,
author = {Yu. S. Belov},
title = {A remark to the {Linnell} theorems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {35--39},
year = {2022},
volume = {512},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a3/}
}
Yu. S. Belov. A remark to the Linnell theorems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 35-39. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a3/
[1] M. Bownik, D. Speegle, “Linear independence of time-frequency translates of functions with faster than exponential decay”, Bull. Lond. Math. Soc., 45:3 (2013), 554–566 | DOI | MR
[2] C. Demeter, A. Zaharescu, “Proof of the HRT conjecture for $(2, 2)$ configurations”, J. Math. Anal. Appl., 388:1 (2012), 151–159 | DOI | MR
[3] K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston Inc., Boston, MA, 2001 | MR
[4] C. Heil, J. Ramanathan, P. Topiwala, “Linear independence of time-frequency translates”, Proc. Amer. Math. Soc., 124:9 (1996), 2787–2795 | DOI | MR
[5] P. A. Linnell, “von Neumann algebras and linear independence of translates”, Proc. Amer. Math. Soc., 127:11 (1999), 3269–3277 | DOI | MR