Complementing nonuniqueness sets in model spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 27-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that any incomplete system of reproducing kernels in a model subspace $K_\theta = H^2\ominus \theta H^2$ of the Hardy space $H^2$ can be complemented to a complete and minimal system of reproducing kernels. Thus, any nonuniqueness set for $K_\theta$ can be complemented to a minimal uniqueness set.
@article{ZNSL_2022_512_a2,
     author = {A. D. Baranov},
     title = {Complementing nonuniqueness sets in model spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--34},
     year = {2022},
     volume = {512},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a2/}
}
TY  - JOUR
AU  - A. D. Baranov
TI  - Complementing nonuniqueness sets in model spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 27
EP  - 34
VL  - 512
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a2/
LA  - ru
ID  - ZNSL_2022_512_a2
ER  - 
%0 Journal Article
%A A. D. Baranov
%T Complementing nonuniqueness sets in model spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 27-34
%V 512
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a2/
%G ru
%F ZNSL_2022_512_a2
A. D. Baranov. Complementing nonuniqueness sets in model spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 27-34. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a2/

[1] E. Abakumov, A. Baranov, Yu. Belov, “Krein-type theorems and ordered structure for Cauchy–de Branges spaces”, J. Funct. Anal., 277:1 (2019), 200–226 | DOI | MR

[2] St. Petersburg Math. J., 30:5 (2019), 761–802 | DOI | MR

[3] A. Baranov, Yu. Belov, “Synthesizable differentiation-invariant subspaces”, Geom. Funct. Anal., 29:1 (2019), 44–71 | DOI | MR

[4] Yu. Belov, “Complementability of exponential systems”, C. R. Math. Acad. Sci. Paris, 353 (2015), 215–218 | DOI | MR

[5] Yu. Belov, A. Borichev, A. Kuznetsov, “Upper and lower densities of Gabor Gaussian systems”, Appl. Comput. Harm. Anal., 49:2 (2020), 438–450 | DOI | MR

[6] L. de Branges, Hilbert Spaces of Entire Functions, Prentice–Hall, Englewood Cliffs, 1968 | MR

[7] D. Hitt, “Invariant subspaces of $H^2$ of an annulus”, Pacific J. Math., 134 (1988), 101–120 | DOI | MR

[8] A. Nakamura, “Basis properties and complements of complex exponential systems”, Hokkaido Math. J., 36:1 (2007), 193–206 | DOI | MR

[9] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980

[10] N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading, Math. Surveys Monogr., 92, 93, AMS, Providence, RI, 2002 | MR

[11] D. Sarason, “Nearly invariant subspaces of the backward shift”, Oper. Theory: Adv. Appl., 35 (1988), 481–493 | MR

[12] K. Seip, “On the connection between exponential bases and certain related sequence in $L^2[-\pi, \pi]$”, J. Funct. Anal., 130 (1995), 131–160 | DOI | MR