@article{ZNSL_2022_512_a2,
author = {A. D. Baranov},
title = {Complementing nonuniqueness sets in model spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--34},
year = {2022},
volume = {512},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a2/}
}
A. D. Baranov. Complementing nonuniqueness sets in model spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 27-34. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a2/
[1] E. Abakumov, A. Baranov, Yu. Belov, “Krein-type theorems and ordered structure for Cauchy–de Branges spaces”, J. Funct. Anal., 277:1 (2019), 200–226 | DOI | MR
[2] St. Petersburg Math. J., 30:5 (2019), 761–802 | DOI | MR
[3] A. Baranov, Yu. Belov, “Synthesizable differentiation-invariant subspaces”, Geom. Funct. Anal., 29:1 (2019), 44–71 | DOI | MR
[4] Yu. Belov, “Complementability of exponential systems”, C. R. Math. Acad. Sci. Paris, 353 (2015), 215–218 | DOI | MR
[5] Yu. Belov, A. Borichev, A. Kuznetsov, “Upper and lower densities of Gabor Gaussian systems”, Appl. Comput. Harm. Anal., 49:2 (2020), 438–450 | DOI | MR
[6] L. de Branges, Hilbert Spaces of Entire Functions, Prentice–Hall, Englewood Cliffs, 1968 | MR
[7] D. Hitt, “Invariant subspaces of $H^2$ of an annulus”, Pacific J. Math., 134 (1988), 101–120 | DOI | MR
[8] A. Nakamura, “Basis properties and complements of complex exponential systems”, Hokkaido Math. J., 36:1 (2007), 193–206 | DOI | MR
[9] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980
[10] N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading, Math. Surveys Monogr., 92, 93, AMS, Providence, RI, 2002 | MR
[11] D. Sarason, “Nearly invariant subspaces of the backward shift”, Oper. Theory: Adv. Appl., 35 (1988), 481–493 | MR
[12] K. Seip, “On the connection between exponential bases and certain related sequence in $L^2[-\pi, \pi]$”, J. Funct. Anal., 130 (1995), 131–160 | DOI | MR