@article{ZNSL_2022_512_a1,
author = {A. R. Aliev and E. H. Eyvazov},
title = {Spectral shift function and eigenvalues of the perturbed operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--26},
year = {2022},
volume = {512},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a1/}
}
A. R. Aliev; E. H. Eyvazov. Spectral shift function and eigenvalues of the perturbed operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 15-26. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a1/
[1] A. B. Aleksandrov, V. V. Peller, “Formula sledov Kreina dlya unitarnykh operatorov i operatorno lipshitsevy funktsii”, Funkts. analiz i ego pril., 50:3 (2016), 1–11 | MR
[2] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, 2-e izd., Nauka, M., 1966, 544 pp. | MR
[3] M. Sh. Birman, Izbrannye trudy. Matematicheskaya teoriya rasseyaniya. Funktsiya spektralnogo sdviga, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2010, 504 pp.
[4] M. Sh. Birman, M. G. Krein, “K teorii volnovykh operatorov i operatorov rasseyaniya”, DAN SSSR, 144:3 (1962), 475–478
[5] M. Sh. Birman, D. R. Yafaev, “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44
[6] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., FM, M., 1963, 1108 pp. | MR
[7] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33(75):3 (1953), 597–626
[8] M. G. Krein, “O nekotorykh novykh issledovaniyakh po teorii vozmuschenii samosopryazhennykh operatorov”, Pervaya letnyaya matematicheskaya shkola (Kanev, 1963), v. 1, Naukova dumka, Kiev, 1964, 103–187
[9] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii”, Uspekhi mat. nauk, 7:1 (1952), 171–180 | MR
[10] M. M. Malamud, Kh. Naidkhardt, V. V. Peller, “Formula sleda dlya funktsii szhatii”, Funkts. analiz i ego pril., 51:3 (2017), 33–55 | MR
[11] A. R. Mirotin, “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. III. Nekotorye voprosy teorii vozmuschenii”, Izv. vuzov. Matem., 2017, no. 12, 24–34
[12] M. A. Naimark, Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 528 pp.
[13] P. Alsholm, “Inverse scattering theory for perturbations of rank one”, Duke Math. J., 47:2 (1980), 391–398 | DOI | MR
[14] F. Gesztezy, K. A. Makarov, S. N. Naboko, “The spectral shift operator”, Math. Results in Quantum Mechanic (Prague, 1998), Oper. Theory Adv. Appl., 108, Birkhäuser, Basel, 1999, 59–90 | MR
[15] M. G. Krein, “Perturbation determinants and a trace formula for some classes of pairs of operators”, J. Operator Theory, 17:1 (1987), 129–187 (in Russian) | MR
[16] M. Malamud, H. Neidhardt, “Trace formulas for additive and non-additive perturbations”, Advances in Math., 274 (2015), 736–832 | DOI | MR
[17] M. M. Malamud, H. Neidhardt, V. V. Peller, “Absolute continuity of spectral shift”, Journal of Functional Analysis, 276:5 (2019), 1575–1621 | DOI | MR
[18] V. V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144:12 (2016), 5207–5215 | DOI | MR
[19] D. R. Yafaev, Mathematical scattering theory: Analytic theory, Mathematical Surveys and Monographs, 158, 2010, 444 pp. | DOI | MR