Spectral shift function and eigenvalues of the perturbed operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 15-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the space of square-integrable functions on the positive semi-axis, two positive selfadjoint operators are constructed that are generated by a one-dimensional free Hamiltonian. These operators are employed to construct a pair of spectrally absolutely continuous bounded selfadjoint operators whose difference is an operator of rank $1$. Then the perturbation determinant is used to find an explicit form of the M. G. Krein spectral shift function for this pair. It is shown that despite the $A$-smoothness of the perturbation in the sense of Hölder, the point $\lambda = 1$, where the spectral shift function has a discontinuity of the first kind, is not an eigenvalue of the perturbed operator.
@article{ZNSL_2022_512_a1,
     author = {A. R. Aliev and E. H. Eyvazov},
     title = {Spectral shift function and eigenvalues of the perturbed operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--26},
     year = {2022},
     volume = {512},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a1/}
}
TY  - JOUR
AU  - A. R. Aliev
AU  - E. H. Eyvazov
TI  - Spectral shift function and eigenvalues of the perturbed operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 15
EP  - 26
VL  - 512
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a1/
LA  - ru
ID  - ZNSL_2022_512_a1
ER  - 
%0 Journal Article
%A A. R. Aliev
%A E. H. Eyvazov
%T Spectral shift function and eigenvalues of the perturbed operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 15-26
%V 512
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a1/
%G ru
%F ZNSL_2022_512_a1
A. R. Aliev; E. H. Eyvazov. Spectral shift function and eigenvalues of the perturbed operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 15-26. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a1/

[1] A. B. Aleksandrov, V. V. Peller, “Formula sledov Kreina dlya unitarnykh operatorov i operatorno lipshitsevy funktsii”, Funkts. analiz i ego pril., 50:3 (2016), 1–11 | MR

[2] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, 2-e izd., Nauka, M., 1966, 544 pp. | MR

[3] M. Sh. Birman, Izbrannye trudy. Matematicheskaya teoriya rasseyaniya. Funktsiya spektralnogo sdviga, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2010, 504 pp.

[4] M. Sh. Birman, M. G. Krein, “K teorii volnovykh operatorov i operatorov rasseyaniya”, DAN SSSR, 144:3 (1962), 475–478

[5] M. Sh. Birman, D. R. Yafaev, “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44

[6] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., FM, M., 1963, 1108 pp. | MR

[7] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33(75):3 (1953), 597–626

[8] M. G. Krein, “O nekotorykh novykh issledovaniyakh po teorii vozmuschenii samosopryazhennykh operatorov”, Pervaya letnyaya matematicheskaya shkola (Kanev, 1963), v. 1, Naukova dumka, Kiev, 1964, 103–187

[9] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii”, Uspekhi mat. nauk, 7:1 (1952), 171–180 | MR

[10] M. M. Malamud, Kh. Naidkhardt, V. V. Peller, “Formula sleda dlya funktsii szhatii”, Funkts. analiz i ego pril., 51:3 (2017), 33–55 | MR

[11] A. R. Mirotin, “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. III. Nekotorye voprosy teorii vozmuschenii”, Izv. vuzov. Matem., 2017, no. 12, 24–34

[12] M. A. Naimark, Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 528 pp.

[13] P. Alsholm, “Inverse scattering theory for perturbations of rank one”, Duke Math. J., 47:2 (1980), 391–398 | DOI | MR

[14] F. Gesztezy, K. A. Makarov, S. N. Naboko, “The spectral shift operator”, Math. Results in Quantum Mechanic (Prague, 1998), Oper. Theory Adv. Appl., 108, Birkhäuser, Basel, 1999, 59–90 | MR

[15] M. G. Krein, “Perturbation determinants and a trace formula for some classes of pairs of operators”, J. Operator Theory, 17:1 (1987), 129–187 (in Russian) | MR

[16] M. Malamud, H. Neidhardt, “Trace formulas for additive and non-additive perturbations”, Advances in Math., 274 (2015), 736–832 | DOI | MR

[17] M. M. Malamud, H. Neidhardt, V. V. Peller, “Absolute continuity of spectral shift”, Journal of Functional Analysis, 276:5 (2019), 1575–1621 | DOI | MR

[18] V. V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144:12 (2016), 5207–5215 | DOI | MR

[19] D. R. Yafaev, Mathematical scattering theory: Analytic theory, Mathematical Surveys and Monographs, 158, 2010, 444 pp. | DOI | MR