On substitutions with a weight in the space of operator Lipschitz functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 5-14
Cet article a éte moissonné depuis la source Math-Net.Ru
Operators of the form $f\mapsto x^\beta f(x^\alpha)$ are treated. Among other things, it is proved that such an operator acts on the class of operator Lipschitz functions on $(0,+\infty)$ if and only if $\alpha+\beta=1$.
@article{ZNSL_2022_512_a0,
author = {A. B. Aleksandrov},
title = {On substitutions with a weight in the space of operator {Lipschitz} functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--14},
year = {2022},
volume = {512},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a0/}
}
A. B. Aleksandrov. On substitutions with a weight in the space of operator Lipschitz functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a0/
[1] A. B. Aleksandrov, “Multiplikatory Tëplitsa-Shura dlya klassa $S_p(L^2(G))$ pri $p1$”, Zap. nauchn. semin. POMI, 282, 2001, 5–19
[2] A. B. Aleksandrov, “Operatorno lipshitsevy funktsii i drobno-lineinye preobrazovaniya”, Zap. nauchn. semin. POMI, 401, 2012, 5–52
[3] A.B. Aleksandrov, V. V. Peller, “Operatorno lipshitsevy funktsii”, UMN, 71:4(430) (2016), 3–106 | MR
[4] G. Bennett, “Schur multipliers”, Duke Math. J., 44 (1977), 603–639 | DOI | MR