On substitutions with a weight in the space of operator Lipschitz functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

Operators of the form $f\mapsto x^\beta f(x^\alpha)$ are treated. Among other things, it is proved that such an operator acts on the class of operator Lipschitz functions on $(0,+\infty)$ if and only if $\alpha+\beta=1$.
@article{ZNSL_2022_512_a0,
     author = {A. B. Aleksandrov},
     title = {On substitutions with a weight in the space of operator {Lipschitz} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {512},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On substitutions with a weight in the space of operator Lipschitz functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 5
EP  - 14
VL  - 512
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a0/
LA  - ru
ID  - ZNSL_2022_512_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On substitutions with a weight in the space of operator Lipschitz functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 5-14
%V 512
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a0/
%G ru
%F ZNSL_2022_512_a0
A. B. Aleksandrov. On substitutions with a weight in the space of operator Lipschitz functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 50, Tome 512 (2022), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2022_512_a0/