On the degrees of nondegenerated sections
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 171-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper concerns vector bundles on the projective line over the ring of integers. We deal with bundles of rank 2 with the trivial generic fiber. We consider twistings of such a bundle with a certain degree. It is proved that for sufficiently high degrees there exist nonvaniching sections of corresponding twistings.
@article{ZNSL_2022_511_a6,
     author = {A. L. Smirnov},
     title = {On the degrees of nondegenerated sections},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {171--180},
     year = {2022},
     volume = {511},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a6/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - On the degrees of nondegenerated sections
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 171
EP  - 180
VL  - 511
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a6/
LA  - ru
ID  - ZNSL_2022_511_a6
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T On the degrees of nondegenerated sections
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 171-180
%V 511
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a6/
%G ru
%F ZNSL_2022_511_a6
A. L. Smirnov. On the degrees of nondegenerated sections. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 171-180. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a6/

[1] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981

[2] C. S. Seshadri, “Triviality of vector bundles over the affine space $K^2$”, Proc. Nat. Acad. Sci., 44 (1958), 456–458 | DOI | MR

[3] Ch. C. Hanna, “Subbundles of vector bundles on the projective line”, J. Algebra, 52:2 (1978), 322–327 | DOI | MR

[4] A. L. Smirnov, G. A. Strukov, “Korotkie secheniya nekotorykh rassloenii na proektivnoi pryamoi”, Zap. nauchn. semin. POMI, 490, 2020, 124–141

[5] A. L. Smirnov, S. S. Yakovenko, “Postroenie lineinoi filtratsii dlya rassloenii ranga $2$ na $\mathbf{P}^1_{\mathbb{Z}}$”, Matem. sbornik, 208 (2017), 111–128

[6] A. L. Smirnov, “On filtrations of vector bundles over $\mathbf{P}^1_{\mathbb{Z}}$”, Arithmetic and Geometry, London Math. Soc., Lect. Note Series, 420, Cambridge Univ. Press, 2015, 436–457 | MR