Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 137-160
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider vector bundles of rank $2$ with jumps of heights $1$ and $2$ and a trivial generic fiber on the arithmetic surface $\mathbb{P}^1_{\mathbb{Z}}$. The finiteness of the number of isomorphism classes of such vector bundles with a fixed discriminant and, as a consequence, with a fixed genus is obtained.
@article{ZNSL_2022_511_a4,
author = {V. M. Polyakov},
title = {Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--160},
publisher = {mathdoc},
volume = {511},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/}
}
TY - JOUR
AU - V. M. Polyakov
TI - Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2022
SP - 137
EP - 160
VL - 511
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/
LA - ru
ID - ZNSL_2022_511_a4
ER -
%0 Journal Article
%A V. M. Polyakov
%T Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 137-160
%V 511
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/
%G ru
%F ZNSL_2022_511_a4
V. M. Polyakov. Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 137-160. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/