@article{ZNSL_2022_511_a4,
author = {V. M. Polyakov},
title = {Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--160},
year = {2022},
volume = {511},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/}
}
TY - JOUR
AU - V. M. Polyakov
TI - Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2022
SP - 137
EP - 160
VL - 511
UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/
LA - ru
ID - ZNSL_2022_511_a4
ER -
V. M. Polyakov. Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 137-160. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/
[1] A. L. Smirnov, “On filtrations of vector bundles over ${\textbf P}^1_{\mathbb Z}$”, Arithmetic and Geometry, London Math. Soc. Lect. Note Series, 420, Cambridge Univ. Press, 2015, 436–457 | MR
[2] L. N. Vasershtein, “O gruppe $SL_2$ nad dedekindovymi koltsami arifmeticheskogo tipa”, Matem. sb., 89(131):2(10) (1972), 313–322
[3] D. Quillen, “Projetive modules over polynomial rings”, Invent. Math., 36 (1976), 167–171 | DOI | MR
[4] A. A. Suslin, “Proektivnye moduli nad koltsom mnogochlenov svobodny”, Dokl. AN SSSR, 229:5 (1976), 1063–1066 | MR
[5] A. Grothendieck, “Sur la classification des fibrés holomorphes sur la sphére de Riemann”, Amer. Journal of Math., 79:1 (1957) | DOI | MR
[6] A. Grothendieck, Éléments de géométrie algébrique, v. II, Publications Mathématiques de l'IHÉS, 8, Étude globale élémentaire de quelques classes de morphismes, 1961 | MR
[7] Ch. C. Hanna, “Subbundles of vector bundles on the projective line”, J. Algebra, 52:2 (1978), 322–327 | DOI | MR
[8] G. Horrocks, “Projective modules over an extension of a local ring”, Proc. London Math. Soc. (3), 14 (1964), 714–718 | DOI | MR
[9] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981
[10] J. W. S. Cassels, Rational Quadratic Forms, Academic press, 1978 | MR
[11] A. L. Smirnov, “Vektornye rassloeniya na ${\textbf P}^1_{\mathbb Z}$ s prostymi podskokami”, Zap. nauchn. semin. POMI, 452, 2016, 202–217
[12] S. S. Yakovenko, “Vektornye rassloeniya na ${\textbf P}^1_{\mathbb Z}$ s obschim sloem $\mathcal{O}+\mathcal{O}(1)$ i prostymi podskokami”, Zap. nauchn. sem. POMI, 452, 2016, 218–237
[13] A. A. Beilinson, “Kogerentnye puchki na $P^n$ i problemy lineinoi algebry”, Funkts. analiz i ego prilozheniya, 12:3 (1978), 68–69 | MR
[14] K. Okonek, M. Shnaider, Kh. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984
[15] D. A. Cox, Primes of the Form $x^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication, Monographs and textbooks in pure and applied math., Wiley, 1989