Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 137-160

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider vector bundles of rank $2$ with jumps of heights $1$ and $2$ and a trivial generic fiber on the arithmetic surface $\mathbb{P}^1_{\mathbb{Z}}$. The finiteness of the number of isomorphism classes of such vector bundles with a fixed discriminant and, as a consequence, with a fixed genus is obtained.
@article{ZNSL_2022_511_a4,
     author = {V. M. Polyakov},
     title = {Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--160},
     publisher = {mathdoc},
     volume = {511},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/}
}
TY  - JOUR
AU  - V. M. Polyakov
TI  - Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 137
EP  - 160
VL  - 511
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/
LA  - ru
ID  - ZNSL_2022_511_a4
ER  - 
%0 Journal Article
%A V. M. Polyakov
%T Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 137-160
%V 511
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/
%G ru
%F ZNSL_2022_511_a4
V. M. Polyakov. Finiteness of the number of classes of vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ with jumps of height $2$. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 137-160. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a4/