Combinatoric of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 54-99

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the combinatorial properties of the karyon tilings $\mathcal{T}$ of the torus $\mathbb{T}^d$ of an arbitrary dimension $d$. Our main results are the following statements: 1) the karyon corona $\mathbf{Cr}$ contains all types of polyhedral stars of the $\mathcal{T}$ tilings; 2) the number of all faces of dimension $a$ of the tiling $\mathcal{T}$ is equal to $md!/((d-a)!a!)$, where $m$ is the order of tilling.
@article{ZNSL_2022_511_a2,
     author = {V. G. Zhuravlev},
     title = {Combinatoric of the karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--99},
     publisher = {mathdoc},
     volume = {511},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Combinatoric of the karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 54
EP  - 99
VL  - 511
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/
LA  - ru
ID  - ZNSL_2022_511_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Combinatoric of the karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 54-99
%V 511
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/
%G ru
%F ZNSL_2022_511_a2
V. G. Zhuravlev. Combinatoric of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 54-99. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/