Combinatoric of the karyon tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 54-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this article, we study the combinatorial properties of the karyon tilings $\mathcal{T}$ of the torus $\mathbb{T}^d$ of an arbitrary dimension $d$. Our main results are the following statements: 1) the karyon corona $\mathbf{Cr}$ contains all types of polyhedral stars of the $\mathcal{T}$ tilings; 2) the number of all faces of dimension $a$ of the tiling $\mathcal{T}$ is equal to $md!/((d-a)!a!)$, where $m$ is the order of tilling.
@article{ZNSL_2022_511_a2,
     author = {V. G. Zhuravlev},
     title = {Combinatoric of the karyon tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--99},
     year = {2022},
     volume = {511},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Combinatoric of the karyon tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 54
EP  - 99
VL  - 511
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/
LA  - ru
ID  - ZNSL_2022_511_a2
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Combinatoric of the karyon tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 54-99
%V 511
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/
%G ru
%F ZNSL_2022_511_a2
V. G. Zhuravlev. Combinatoric of the karyon tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 54-99. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a2/

[1] V. G. Zhuravlev, “Lokalnaya struktura yadernykh razbienii”, Zap. nauchn. semin. POMI, 1, 2021, 32–73

[2] V. G. Zhuravlev, “Simmetrii yadernykh razbienii”, Zap. nauchn. semin. POMI, 1, 2021, 74–121 | MR

[3] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92

[4] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauchn. semin. POMI, 440, 2015, 81–98

[5] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 283–303

[6] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019

[7] V. G. Zhuravlev, A. V. Maleev, “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210

[8] V. G. Zhuravlev, “Parametrizatsiya dvumernogo kvaziperiodicheskogo razbieniya Rozi”, Algebra i analiz, 22:4 (2010), 21–56

[9] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195

[10] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145

[11] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102

[12] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR

[13] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR

[14] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauchn. semin. POMI, 322, 2005, 83–106

[15] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, eds. E. Manstavicius et al., TEV, Vilnius, 2007, 240–254 | MR

[16] V. G. Zhuravlev, A. V. Maleev, “Funktsiya slozhnosti i forsing v dvumernom kvaziperiodicheskom razbienii Rozi”, Kristallografiya, 52:4 (2007), 610–616

[17] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR

[18] O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, Elementarnaya topologiya, Izd-vo MTsNMO, 2010

[19] H. Poincare, “Sur la generalisation d'un theoreme d'Euler relatif aux polyedres”, Compt. Rend. Acad. Sci., 117 (1893), 144–145