Voir la notice du chapitre de livre
@article{ZNSL_2022_511_a0,
author = {N. L. Gordeev and E. A. Egorchenkova},
title = {Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of {Cremona} subgroups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--27},
year = {2022},
volume = {511},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/}
}
TY - JOUR AU - N. L. Gordeev AU - E. A. Egorchenkova TI - Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 5 EP - 27 VL - 511 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/ LA - ru ID - ZNSL_2022_511_a0 ER -
%0 Journal Article %A N. L. Gordeev %A E. A. Egorchenkova %T Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 5-27 %V 511 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/ %G ru %F ZNSL_2022_511_a0
N. L. Gordeev; E. A. Egorchenkova. Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 5-27. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/
[1] N. Gordeev, E. Egorchenkova, Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups, arXiv: 2112.06332 [math.AG]
[2] F. Abadie, “Partial actions and grouppoids”, Proc. Amer. Math. Soc., 132:4 (2003), 1037–1047 | DOI | MR
[3] E. Ellers, N. Gordeev, “Intersection of Conjugacy Classes of Chevalley Groups with Gauss Cell”, J. Algebra, 220 (1999), 591–611 | DOI | MR
[4] R. Exel, “Partial actions of groups and actions of inverse semigroups”, Proc. Amer. Math. Soc., 126:12 (1998), 3481–3494 | DOI | MR
[5] Jean-Pierre Serre, “Le groupe de Cremona e ses sous-groups finis”, Seminaire BOURBAKI, 61 (2008–2009), 1000, 23 pp. | MR
[6] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhniki. Seriya Sovrem. probl. matem. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309