Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 5-27
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a simple algebraic group over an algebraically closed field $K$ and let $N = N_G(T)$ be the normalizer of a fixed maximal torus $T\leq G$. Further, let $U$ be the unipotent radical of a fixed Borel subgroup $B$ that contains $T$ and let $U^-$ be the unipotent radical of the opposite Borel subgroup $B^-$. The Bruhat decomposition implies the decomposition $G = NU^-UN$. The Zariski closed subset $U^-U\subset G$ is isomorphic to the affine space $A_K^m$ where $m = \dim G -\dim T$ is the number of roots in the corresponding root system. Here we construct a subgroup $\mathcal{N}\leq \mathrm{Cr}_m(K)$ that “acts partially” on $A_K^m\approx\mathcal{U}$ and we show that there is one-to-one correspondence between the orbits of such a partial action and the set of double cosets $\{NgN\}$. Here we also calculate the set $\{g_\alpha\}_{\alpha \in \mathfrak A}\subset \mathcal{U}$ in the simplest case $G = \mathrm{SL}_2(\mathbb C)$.
			
            
            
            
          
        
      @article{ZNSL_2022_511_a0,
     author = {N. L. Gordeev and E. A. Egorchenkova},
     title = {Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of {Cremona} subgroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {511},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/}
}
                      
                      
                    TY - JOUR AU - N. L. Gordeev AU - E. A. Egorchenkova TI - Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 5 EP - 27 VL - 511 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/ LA - ru ID - ZNSL_2022_511_a0 ER -
%0 Journal Article %A N. L. Gordeev %A E. A. Egorchenkova %T Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 5-27 %V 511 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/ %G ru %F ZNSL_2022_511_a0
N. L. Gordeev; E. A. Egorchenkova. Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 5, Tome 511 (2022), pp. 5-27. http://geodesic.mathdoc.fr/item/ZNSL_2022_511_a0/
