Integral identities for the boundary of a convex body
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 172-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present the multidimensional versions of the Pleijel and Ambartzumian–Pleijel identities. We also obtain the generalization of both the Blaschke–Petkantschin and Zähle formulae considering the case when some points are chosen inside the convex body and some on the boundary. Moreover, a version of the Zähle formula for the polytopes is derived.
@article{ZNSL_2022_510_a9,
     author = {T. D. Moseeva},
     title = {Integral identities for the boundary of a convex body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--188},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a9/}
}
TY  - JOUR
AU  - T. D. Moseeva
TI  - Integral identities for the boundary of a convex body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 172
EP  - 188
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a9/
LA  - ru
ID  - ZNSL_2022_510_a9
ER  - 
%0 Journal Article
%A T. D. Moseeva
%T Integral identities for the boundary of a convex body
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 172-188
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a9/
%G ru
%F ZNSL_2022_510_a9
T. D. Moseeva. Integral identities for the boundary of a convex body. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 172-188. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a9/

[1] R. V. Ambartzumian, Combinatorial Integral Geometry: with Applications to Mathematical Stereology, John Wiley Sons, 1982 | MR

[2] R. V. Ambartzumian, Factorization Calculus and Geometric Probability, No 33, Cambridge University Press, 1990 | MR

[3] R. V. Ambartzumian, J. Mecke, D. Stoyan, Introduction to Stochastic Geometry, 1989 | MR

[4] F. Barthe, O. Guédon, S. Mendelson, A. Naor, “A probabilistic approach to the geometry of the $l^p_n$-ball”, Ann. Probab., 33:2 (2005), 480–513 | DOI | MR

[5] J. F. C. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6:3 (1969), 660–672 | DOI | MR

[6] A. Pleijel, “Zwei kurze Beweise der isoperimetrischen Ungleichung”, Archiv Math., 7:4 (1956), 317–319 | DOI | MR

[7] M. Reitzner, “Random points on the boundary of smooth convex bodies”, Trans. Amer. Math. Soc., 354:6 (2002), 2243–2278 | DOI | MR

[8] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008 | DOI | MR

[9] M. Zähle, “A kinematic formula and moment measures of random sets”, Math. Nachr., 149:1 (1990), 325–340 | DOI | MR