@article{ZNSL_2022_510_a9,
author = {T. D. Moseeva},
title = {Integral identities for the boundary of a convex body},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--188},
year = {2022},
volume = {510},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a9/}
}
T. D. Moseeva. Integral identities for the boundary of a convex body. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 172-188. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a9/
[1] R. V. Ambartzumian, Combinatorial Integral Geometry: with Applications to Mathematical Stereology, John Wiley Sons, 1982 | MR
[2] R. V. Ambartzumian, Factorization Calculus and Geometric Probability, No 33, Cambridge University Press, 1990 | MR
[3] R. V. Ambartzumian, J. Mecke, D. Stoyan, Introduction to Stochastic Geometry, 1989 | MR
[4] F. Barthe, O. Guédon, S. Mendelson, A. Naor, “A probabilistic approach to the geometry of the $l^p_n$-ball”, Ann. Probab., 33:2 (2005), 480–513 | DOI | MR
[5] J. F. C. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6:3 (1969), 660–672 | DOI | MR
[6] A. Pleijel, “Zwei kurze Beweise der isoperimetrischen Ungleichung”, Archiv Math., 7:4 (1956), 317–319 | DOI | MR
[7] M. Reitzner, “Random points on the boundary of smooth convex bodies”, Trans. Amer. Math. Soc., 354:6 (2002), 2243–2278 | DOI | MR
[8] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008 | DOI | MR
[9] M. Zähle, “A kinematic formula and moment measures of random sets”, Math. Nachr., 149:1 (1990), 325–340 | DOI | MR