Two limit theorems on the intersections of random Zipf sets
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 165-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work we study the asymptotic behaviour of the rarest element in the intersections of a random Zipf set with a large number of independent random sets of the same type but, eventually, with different parameters. The same problem is solved for the maximum of the integral measure of intersection associated with exponentially growing weights.
@article{ZNSL_2022_510_a8,
     author = {M. A. Lifshits and I. M. Lyalinov},
     title = {Two limit theorems on the intersections of random {Zipf} sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--171},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a8/}
}
TY  - JOUR
AU  - M. A. Lifshits
AU  - I. M. Lyalinov
TI  - Two limit theorems on the intersections of random Zipf sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 165
EP  - 171
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a8/
LA  - ru
ID  - ZNSL_2022_510_a8
ER  - 
%0 Journal Article
%A M. A. Lifshits
%A I. M. Lyalinov
%T Two limit theorems on the intersections of random Zipf sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 165-171
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a8/
%G ru
%F ZNSL_2022_510_a8
M. A. Lifshits; I. M. Lyalinov. Two limit theorems on the intersections of random Zipf sets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 165-171. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a8/

[1] F. Auerbach, “Das Gesetz der Bevölkerungskonzentration”, Petermanns Geogr. Mitteilungen, 59 (1913), 73–76

[2] J.-B. Estoup, Gammes Sténographiques, various editions, Paris, 1908–1916

[3] B. Hoffmann, M. Lifshits, Yu. Lifshits, D. Nowotka, “Maximal intersection queries in randomized input models”, Theory Comput. Syst., 46:1 (2010), 104–119 | DOI | MR

[4] A. Lelu, “Jean-Baptiste Estoup and the origins of Zipf's law: a stenographer with a scientific mind (1868–1950)”, Boletn de Estadstica e Investigación Operativa, 30:1 (2014), 66–77

[5] C. D. Manning, H. Schütze, Foundations of Statistical Natural Language Processing, MIT Press, Cambridge, 1999 | MR

[6] M. Petruszewycz, “L'histoire de la loi d'Estoup–Zipf: documents”, Math. Sci. Hum., 44 (1973), 41–56 | MR

[7] G. K. Zipf, Selected Studies of the Principle of Relative Frequency in Language, Harvard Univ. Press, 1932

[8] G. K. Zipf, The Psycho-Biology of Language, Mifflin, Houghton, 1935

[9] M. P. Bakulina, “Ispolzovanie zakona Tsipfa dlya szhatiya tekstov”, Diskretn. analiz i issled. oper., 14:2 (2007), 3–13

[10] Ya. Galambosh, Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, M., 1984 | MR

[11] M. A. Lifshits, I. M. Lyalinov, Veroyatnostnye svoistva mnozhestv Tsipfa i ikh maksimalnykh peresechenii, 2022 (to appear)

[12] V. P. Maslov, T. V. Maslova, “O zakone Tsipfa i rangovykh raspredeleniyakh v lingvistike i semiotike”, Matem. zametki, 80:5 (2006), 718–732 | MR

[13] V. P. Maslov, “Fazovye perekhody nulevogo roda i kvantovanie zakona Tsipfa”, Teor. matem. fiz., 150:1 (2007), 118–142 | MR

[14] V. P. Maslov, “Ob odnoi obschei teoreme teorii mnozhestv, privodyaschei k raspredeleniyu Gibbsa, Boze–Einshteina, Pareto i zakonu Tsipfa–Mandelbrota dlya fondovogo rynka”, Matem. zametki, 78:6 (2005), 870–877

[15] Yu. I. Manin, “Zakon Tsipfa i veroyatnostnye raspredeleniya Levina”, Funkts. analiz i ego pril., 48:2 (2004), 51–66

[16] Yu. A. Shreider, O vozmozhnosti teoreticheskogo vyvoda statisticheskikh zakonomernostei teksta (k obosnovaniyu zakona Tsipfa), Probl. peredachi inform., 3:1 (1967), 57–63

[17] B. A. Trubnikov, I. A. Rumynskii, “Prosteishii vyvod zakona Tsipfa–Krylova dlya slov i vozmozhnost ego “evolyutsionnoi” interpretatsii”, Dokl. AN SSSR, 321:2 (1991), 270–275