On the properties of a class of random operators
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 143-164
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider random operators arising when one constructs a probabilistic representation of the resolvent of an operator $-\frac{1}{2} \frac{d}{dx}\big(b^2(x)\frac{d}{dx}\big)+V(x)$. We prove that with probability one these operators are linear integral operators and study properties of their kernels.
			
            
            
            
          
        
      @article{ZNSL_2022_510_a7,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {On the properties of a class of random operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--164},
     publisher = {mathdoc},
     volume = {510},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a7/}
}
                      
                      
                    TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - On the properties of a class of random operators JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 143 EP - 164 VL - 510 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a7/ LA - ru ID - ZNSL_2022_510_a7 ER -
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On the properties of a class of random operators. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 143-164. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a7/