On the properties of a class of random operators
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 143-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider random operators arising when one constructs a probabilistic representation of the resolvent of an operator $-\frac{1}{2} \frac{d}{dx}\big(b^2(x)\frac{d}{dx}\big)+V(x)$. We prove that with probability one these operators are linear integral operators and study properties of their kernels.
@article{ZNSL_2022_510_a7,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {On the properties of a class of random operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--164},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a7/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - On the properties of a class of random operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 143
EP  - 164
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a7/
LA  - ru
ID  - ZNSL_2022_510_a7
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T On the properties of a class of random operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 143-164
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a7/
%G ru
%F ZNSL_2022_510_a7
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On the properties of a class of random operators. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 143-164. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a7/

[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, Sankt-Peterburg–M.–Krasnodar, 2010

[3] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnom semeistve kompleksnykh stokhasticheskikh protsessov”, Doklady Akademii nauk, 501 (2021), 38–41

[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnom semeistve sluchainykh operatorov”, Teoriya veroyatn. i ee primen. (to appear)

[6] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969

[7] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Nauka, M., 1958

[8] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 3, Mir, M., 1978 | MR

[9] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1977 | MR