Nonparametric signal detection with small values of type I and type II error probabilities
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 124-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider problem of signal detection in Gaussian white noise. Test statistics are linear combinations of squares of estimators of Fourier coefficients or $\mathbb{L}_2$-norms of kernel estimators. We point out necessary and sufficient conditions when nonparametric sets of alternatives have a given rate of exponential decay for type II error probabilities.
@article{ZNSL_2022_510_a6,
     author = {M. S. Ermakov},
     title = {Nonparametric signal detection with small values of type {I} and type {II} error probabilities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--142},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a6/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Nonparametric signal detection with small values of type I and type II error probabilities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 124
EP  - 142
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a6/
LA  - ru
ID  - ZNSL_2022_510_a6
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Nonparametric signal detection with small values of type I and type II error probabilities
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 124-142
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a6/
%G ru
%F ZNSL_2022_510_a6
M. S. Ermakov. Nonparametric signal detection with small values of type I and type II error probabilities. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 124-142. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a6/

[1] P. J. Bickel, M. Rosenblatt, “On some global measures of deviation of density function estimates”, Ann. Statist., 1 (1973), 1071–1095 | MR

[2] L. Comminges, A. Dalalyan, “Minimax testing of a composite null hypothesis defined via a quadratic functional in the model of regression”, Electronic J. Statist., 7 (2013), 146–190 | DOI | MR

[3] M. S. Ermakov, “Minimaksnoe obnaruzhenie signala v gaussovskom belom shume”, Teor. veroyatn. i ee primen., 35 (1990), 704–715

[4] M. S. Ermakov, “Testing nonparametric hypothesis for small type I and type II error probabilities”, Probl. Inform. Transmition, 44 (2008), 54–73 | MR

[5] M. S. Ermakov, “Nonparametric signal detection with small type I and type II error probabilities”, Statist. Inference Stoch. Processes, 14 (2011), 1–19 | DOI | MR

[6] M. S. Ermakov, “On uniform consistency of nonparametric tests. I”, J. Math. Sci. , 258 (2021), 802–837 | DOI | MR

[7] M. S. Ermakov, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev II”, Zap. nauchn. semin. POMI, 495, 2022, 133–164

[8] J. Horowitz, V. Spokoiny, “An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative”, Econometrica, 69 (2001), 599–631 | DOI | MR

[9] I. A. Ibragimov, R. Z. Has'minskii, “On the estimation of an infinitedimensional parameter in Gaussian white noise”, Soviet Math. Dokl., 18 (1977), 1307–1309 | MR

[10] I. A. Ibragimov, R. Z. Has'minskii, Statistical Estimation: Asymptotic Theory, Springer, N.Y., 1981 | MR

[11] Yu. I. Ingster, I. A. Suslina, Nonparametric goodness-of-fit testing under gaussian models, Lecture Notes in Statistics, 169, Springer, N.Y., 2002 | MR

[12] G. Kerkyacharian, D. Picard, “Density estimation by kernel and wavelets methods: optimality of Besov spaces”, Statist. Probab. Lett., 18 (1993), 327–336 | DOI | MR

[13] J. Neyman, “Smooth test for goodness of fit”, Skand. Aktuarietidskr., 1–2 (1937), 149–199

[14] L. V. Osipov, “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 17 (1972), 320–341

[15] V. V. Petrov, “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10 (1965), 310–322

[16] V. Rivoirard, “Maxisets for linear procedures”, Statist. Probab. Lett., 67 (2004), 267–275 | DOI | MR