Mixed volume of infinite-dimensional convex compact sets
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 98-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Dospolova M. K. Mixed volume of infinite-dimensional convex compact sets. Let $K$ be a convex compact $GB$-subset of a separable Hilbert space $H$. Denote by $\mathrm{Spec}_k K$ the set $\{(\xi_1(h), \ldots, \xi_k(h))\colon h\in K\}\subset \mathbb{R}^k,$ where $\xi_1, \ldots, \xi_k$ are independent copies of the isonormal Gaussian process. Tsirelson showed that in this case the intrinsic volumes of $K$ satisfy the relation \begin{equation*} V_k(K)= \frac{(2\pi)^{k/2}}{k!\kappa_k} \mathbf{E} \mathrm{Vol}_k(\mathrm{Spec}_k K). \end{equation*} Here, $\mathbf{E} \ \mathrm{Vol}_k(\mathrm{Spec}_k K)$ is the mean volume of $\mathrm{Spec}_k K$ and $\kappa_k$ is the volume of the $k$-dimensional unit ball. In this work, we generalize Tsirelson's theorem to the case of mixed volumes of infinite-dimensional convex compact $GB$-subsets of $H$, first introducing the notion of mixed volume for infinite-dimensional convex subsets of $H$. Moreover, using the obtained result we compute the mixed volume of the closed convex hulls of two orthogonal Wiener spirals.
@article{ZNSL_2022_510_a5,
     author = {M. K. Dospolova},
     title = {Mixed volume of infinite-dimensional convex compact sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--123},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a5/}
}
TY  - JOUR
AU  - M. K. Dospolova
TI  - Mixed volume of infinite-dimensional convex compact sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 98
EP  - 123
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a5/
LA  - ru
ID  - ZNSL_2022_510_a5
ER  - 
%0 Journal Article
%A M. K. Dospolova
%T Mixed volume of infinite-dimensional convex compact sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 98-123
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a5/
%G ru
%F ZNSL_2022_510_a5
M. K. Dospolova. Mixed volume of infinite-dimensional convex compact sets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 98-123. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a5/

[1] Yu. D. Burago, V. A. Zalgaller, Geometricheskie neravenstva, Nauka, 1980

[2] D. N. Zaporozhets, Z. Kabluchko, “Sluchainye opredeliteli, smeshannye ob'emy ellipsoidov i nuli gaussovskikh sluchainykh polei”, Zap. nauchn. semin. POMI, 408, 2012, 187–196

[3] A. N. Kolmogorov, Matematika i mekhanika: izbrannye trudy, Nauka, 1985

[4] M. A. Lifshits, Gaussovskie sluchainye funktsii, Izdatelstvo TViMS, Kiev, 1995

[5] M. A. Lifshits, Lektsii po gaussovskim protsessam, Izdatelstvo Lan, 2016

[6] V. N. Sudakov, “Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii”, Trudy MIAN, 141, 1976, 3–191

[7] B. S. Tsirelson, “Estestvennaya modifikatsiya sluchainogo protsessa i ee prilozhenie k sluchainym funktsionalnym ryadam i gaussovskim meram”, Zap. nauchn. semin. LOMI, 55, 1976, 35–63

[8] B. S. Tsirelson, “Geometricheskii podkhod k otsenke maksimalnogo pravdopodobiya dlya beskonechnomernogo gaussovskogo sdviga. I”, Teoriya veroyatn. i ee primen., 27:2 (1982), 388–395 | MR

[9] B. S. Tsirelson, “Geometricheskii podkhod k otsenke maksimalnogo pravdopodobiya dlya beskonechnomernogo gaussovskogo sdviga. II”, Teoriya veroyatn. i ee primen., 30:4 (1985), 772–779 | MR

[10] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., 62, American Mathematical Society, Providence, RI, 1998 | DOI | MR

[11] S. Chevet, “Processus Gaussiens et volumes mixtes”, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 36:1 (1976), 47–65 | DOI | MR

[12] M. El Bachir, L'enveloppe convexe du mouvement brownien, PhD thesis, 1983

[13] W. Feller, An introduction to probability theory and its applications, v. II, second edition, John Wiley Sons, Inc., New York–London–Sydney, 1971 | MR

[14] F. Gao, R. A. Vitale, “Intrinsic volumes of the Brownian motion body”, Discrete Comput. Geom., 26:1 (2001), 41–50 | DOI | MR

[15] Z. Kabluchko, D. N. Zaporozhets, “Intrinsic volumes of Sobolev balls with applications to Brownian convex hulls”, Trans. Amer. Math. Soc., 368:12 (2016), 8873–8899 | DOI | MR

[16] S. N. Majumdar, A. Comtet, J. Randon-Furling, “Random Convex hulls and extreme value statistics”, J. Stat. Phys., 138:6 (2010), 955–1009 | DOI | MR

[17] H. Minkowski, “Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs”, Gesammelte Abhandlungen, v. 2, 1911, 131–229

[18] L. A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia Math. Appl., 1, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976 | MR

[19] R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, Encyclopedia Math. Appl., 151, expanded edition, Cambridge University Press, Cambridge, 2014 | MR

[20] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2008 | MR