@article{ZNSL_2022_510_a4,
author = {Yu. Davydov and V. Paulauskas},
title = {More on the convergence of {Gaussian} convex hulls},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--97},
year = {2022},
volume = {510},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a4/}
}
Yu. Davydov; V. Paulauskas. More on the convergence of Gaussian convex hulls. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 87-97. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a4/
[1] Yu. Davydov, “On convex hull of Gaussian samples”, Lith. Math. J., 51 (2011), 171–179 | DOI | MR
[2] Yu. Davydov, C. Dombry, “Asymptotic behavior of the convex hull of a stationary Gaussian process”, Lith. Math. J., 52:3 (2012), 363–368 | DOI | MR
[3] Yu. Davydov, V. Paulauskas, “On the asymptotic form of convex hulls of Gaussian random fields”, Cent. Eur. J. Math., 12:5 (2014), 711–720 | MR
[4] U. Einmahl, “Law of the iterated logarithm type results for random vectors with infinite second moment”, Matematica Applicanda, 44:1 (2016), 167–181 | MR
[5] U. Einmahl, D. Li, “Some results on two-sided LIL behavior”, Ann. Probab., 33:4 (2005), 1601–1624 | DOI | MR
[6] X. Fernique, “Régularité de processus gaussiens”, Inventiones Mathematicae, 12 (1971), 304–320 | DOI | MR
[7] V. Goodman, “Characteristics of normal samples”, Ann. Probab., 16:3 (1988), 1281–1290 | DOI | MR
[8] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, 1991 | MR
[9] S. N. Majumdar, A. Comptet, J. Randon-Furling, “Random convex hulls and extreme value statistics”, J. Stat. Phys., 138 (2010), 955–1009 | DOI | MR
[10] V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995 | MR
[11] M. Talagrand, “Sur l'integrabilité des vecteurs gaussiens”, Z. Wahrscheinlich. Verw. Geb., 68 (1984), 1–8 | DOI | MR