More on the convergence of Gaussian convex hulls
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 87-97
Voir la notice de l'article provenant de la source Math-Net.Ru
A “law of large numbers” for consecutive convex hulls for weakly dependent Gaussian sequences $\{X_n\}$, having the same marginal distribution, is extended to the case when the sequence $\{X_n\}$ has a weak limit. Let $\mathbb{B}$ be a separable Banach space with a conjugate space $\mathbb{B}^\ast$. Let $\{X_n\}$ be a centered $\mathbb{B}$-valued Gaussian sequence satisfying two conditions: 1) $X_n \Rightarrow X $ and 2) For every $x^* \in \mathbb{B}^\ast$ $$ \lim_ {n,m, |n-m|\rightarrow \infty}E\langle X_n, x^*\rangle \langle X_m, x^*\rangle = 0. $$ Then with probability $1$ the normalized convex hulls $$ W_n = \frac{1}{(2\ln n)^{1/2}} \mathrm{conv} \{ X_1,\ldots,X_{n} \} $$ converge in Hausdorff distance to the concentration ellipsoid of a limit Gaussian $\mathbb{B}$-valued random element $X.$ In addition, some related questions are discussed.
@article{ZNSL_2022_510_a4,
author = {Yu. Davydov and V. Paulauskas},
title = {More on the convergence of {Gaussian} convex hulls},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--97},
publisher = {mathdoc},
volume = {510},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a4/}
}
Yu. Davydov; V. Paulauskas. More on the convergence of Gaussian convex hulls. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 87-97. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a4/