Local laws for sparse sample covariance matrices without the truncation condition
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 65-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider sparse sample covariance matrices $\frac1{np_n}\mathbf X\mathbf X^*$, where $\mathbf X$ is a sparse matrix of order $n\times m$ with the sparse probability $p_n$. We prove the local Marchenko–Pastur law in some complex domain assuming that $np_n>\log^{\beta}n$, $\beta>0$ and some $(4+\delta)$-moment condition is fulfilled, $\delta>0$.
@article{ZNSL_2022_510_a3,
     author = {F. G\"otze and A. N. Tikhomirov and D. A. Timushev},
     title = {Local laws for sparse sample covariance matrices without the truncation condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--86},
     year = {2022},
     volume = {510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a3/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
AU  - D. A. Timushev
TI  - Local laws for sparse sample covariance matrices without the truncation condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 65
EP  - 86
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a3/
LA  - en
ID  - ZNSL_2022_510_a3
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%A D. A. Timushev
%T Local laws for sparse sample covariance matrices without the truncation condition
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 65-86
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a3/
%G en
%F ZNSL_2022_510_a3
F. Götze; A. N. Tikhomirov; D. A. Timushev. Local laws for sparse sample covariance matrices without the truncation condition. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 65-86. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a3/

[1] L. Erdős, A. Knowles, H.-T. Yau, J. Yin, “Spectral statistics of Erdős–Rényi graphs I: Local semicircle law”, Ann. Probab., 41:3B (2013), 2279–2375 | MR

[2] L. Erdős, A. Knowles, H.-T. Yau, J. Yin, “Spectral statistics of {E}rdős-{R}ényi graphs II: Eigenvalue spacing and the extreme eigenvalues”, Comm. Math. Phys., 314:3 (2012), 587–640 | DOI | MR

[3] J. Huang, B. Landon, H.-T. Yau, “Bulk universality of sparse random matrices”, J. Math. Phys., 56 (2015), 123301, 1–19 | MR

[4] J. Huang, H.-T. Yau, Edge Universality of Sparse Random Matrices, 2022, arXiv: 2206.06580 [math.PR]

[5] J. O. Lee, K. Schnelli, “Tracy–Widom distribution for the largest eigenvalue of real sample covariance matrices with general population”, Ann. Appl. Probab., 26:6 (2016), 3786–3839 | DOI | MR

[6] J. Y. Hwang, J. O. Lee, K. Schnelli, “Local law and Tracy–Widom limit for sparse sample covariance matrices”, Ann. Appl. Probab., 29:5 (2019), 3006–3036 | DOI | MR

[7] A. N. Tikhomirov, D. A. Timushev, “Local laws for sparse sample covariance matrices”, Mathematics, 10:13 (2022), 2326 | DOI

[8] A. Aggarwal, “Bulk universality for generalized Wigner matrices with few moments”, Probab. Theory Relat, Fields, 173:1–2 (2019), 375–432 | DOI | MR

[9] A. N. Tikhomirov, “Simple proofs of Rosenthal inequalities for linear forms of independent random variables and its generalization to quadratic forms”, Proc. of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 2:34 (2018), 8–13