Brownian local time of the second order at the inverse local time moment
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 51-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Borodin A. N. Brownian local time of the second order at the inverse local time moment. According to the Ray–Knight description the Brownian local time at the inverse local time moment with respect to the spatial variable is a diffusion process. This diffusion has a local time. Thus, we come to the definition of the local time of the initial Brownian local time. We will call such a process the Brownian local time of the second order at the inverse local time moment. The paper studies the Laplace transform of the distribution of the Brownian local time of the second order.
@article{ZNSL_2022_510_a2,
     author = {A. N. Borodin},
     title = {Brownian local time of the second order at the inverse local time moment},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--64},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a2/}
}
TY  - JOUR
AU  - A. N. Borodin
TI  - Brownian local time of the second order at the inverse local time moment
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 51
EP  - 64
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a2/
LA  - ru
ID  - ZNSL_2022_510_a2
ER  - 
%0 Journal Article
%A A. N. Borodin
%T Brownian local time of the second order at the inverse local time moment
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 51-64
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a2/
%G ru
%F ZNSL_2022_510_a2
A. N. Borodin. Brownian local time of the second order at the inverse local time moment. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 51-64. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a2/

[1] A. N. Borodin, “Brounovskoe lokalnoe vremya vtorogo poryadka”, Zap. nauchn. semin. POMI, 505, 2021, 75–86

[2] F. B. Knight, “Random walks and a sojourn density process of Brownian motion”, Trans. Amer. Math. Soc., 109 (1963), 56–86 | DOI | MR

[3] D. B. Ray, “Sojourn times of a diffusion process”, Ill. J. Math., 7 (1963), 615–630 | MR

[4] A. N. Borodin, Sluchainye protsessy, Lan, Sankt-Peterburg, 2017

[5] A. N. Borodin, On the distribution of functionals of Brownian local time, LOMI Preprints E-4-85, L., 1985 | MR

[6] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, Sankt-Peterburg, 2016