On representation of the logarithm for arbitrary characteristic function on segments
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 262-281
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a characteristic function of arbitrary probability law. We obtain analogs of the Lévy–Khintchine formula for it on any segment of the form $[-r,r]$ with finite $r>0$, where the characteristic function does not vanish. Using these representations we prove a criterion of belonging of the corresponding distribution function to the new wide class of so called quasi-infinitely divisible distribution functions.
			
            
            
            
          
        
      @article{ZNSL_2022_510_a15,
     author = {A. A. Khartov},
     title = {On representation of the logarithm for arbitrary characteristic function on segments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--281},
     publisher = {mathdoc},
     volume = {510},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/}
}
                      
                      
                    A. A. Khartov. On representation of the logarithm for arbitrary characteristic function on segments. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 262-281. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/