On representation of the logarithm for arbitrary characteristic function on segments
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 262-281

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a characteristic function of arbitrary probability law. We obtain analogs of the Lévy–Khintchine formula for it on any segment of the form $[-r,r]$ with finite $r>0$, where the characteristic function does not vanish. Using these representations we prove a criterion of belonging of the corresponding distribution function to the new wide class of so called quasi-infinitely divisible distribution functions.
@article{ZNSL_2022_510_a15,
     author = {A. A. Khartov},
     title = {On representation of the logarithm for arbitrary characteristic function on segments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--281},
     publisher = {mathdoc},
     volume = {510},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/}
}
TY  - JOUR
AU  - A. A. Khartov
TI  - On representation of the logarithm for arbitrary characteristic function on segments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 262
EP  - 281
VL  - 510
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/
LA  - ru
ID  - ZNSL_2022_510_a15
ER  - 
%0 Journal Article
%A A. A. Khartov
%T On representation of the logarithm for arbitrary characteristic function on segments
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 262-281
%V 510
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/
%G ru
%F ZNSL_2022_510_a15
A. A. Khartov. On representation of the logarithm for arbitrary characteristic function on segments. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 262-281. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/