On representation of the logarithm for arbitrary characteristic function on segments
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 262-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a characteristic function of arbitrary probability law. We obtain analogs of the Lévy–Khintchine formula for it on any segment of the form $[-r,r]$ with finite $r>0$, where the characteristic function does not vanish. Using these representations we prove a criterion of belonging of the corresponding distribution function to the new wide class of so called quasi-infinitely divisible distribution functions.
@article{ZNSL_2022_510_a15,
     author = {A. A. Khartov},
     title = {On representation of the logarithm for arbitrary characteristic function on segments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262--281},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/}
}
TY  - JOUR
AU  - A. A. Khartov
TI  - On representation of the logarithm for arbitrary characteristic function on segments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 262
EP  - 281
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/
LA  - ru
ID  - ZNSL_2022_510_a15
ER  - 
%0 Journal Article
%A A. A. Khartov
%T On representation of the logarithm for arbitrary characteristic function on segments
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 262-281
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/
%G ru
%F ZNSL_2022_510_a15
A. A. Khartov. On representation of the logarithm for arbitrary characteristic function on segments. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 262-281. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a15/

[1] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986

[2] M. G. Krein, O predstavlenii funktsii integralami Fure–Stiltesa, Uch. zap. Kuibyshevskogo gos. ped. i uchit. inst. im. V. V. Kuibysheva, 7 (1943), 123–148

[3] Zh.-P. Kakhan, Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[4] A. A. Khartov, I. A. Alekseev, Kvazi-bezgranichnaya delimost i trekhtochechnye veroyatnostnye zakony, Zap. nauchn. semin. POMI, 495, 2020, 305–316 | MR

[5] I. A. Alexeev, A. A. Khartov, “Spectral representations of characteristic functions of discrete probability laws”, Bernoulli, 2021 (to appear); arXiv: 2101.06038

[6] D. Berger, M. Kutlu, Quasi-infinite divisibility of a class of distributions with discrete part, 2022, arXiv: 2204.09651

[7] D. Berger, M. Kutlu, A. Linder, “On multivariate quasi-infinitely divisible distributions”, A Lifetime of Excersions Through Random Walks and Lévy Processes, A Volume in Honour of Ron Doney's 80th Birthday, Progress in Probability, 78, eds. L. Chaumont, A.E. Kyprianou, Birkhäuser, 2021, 87–120 | DOI | MR

[8] H. Chhaiba, N. Demni, Z. Mouayn, “Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels”, J. Math. Phys., 57:7 (2016), 072103 | DOI | MR

[9] N. Demni, Z. Mouayn, “Analysis of generalized Poisson distributions associated with higher Landau levels”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18:4 (2015), 1550028 | DOI | MR

[10] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, Elsevier, Burlington, 2007 | MR

[11] A. A. Khartov, “A criterion of quasi-infinite divisibility for discrete laws”, Statist. Probab. Lett., 185 (2022), 109436 | DOI | MR

[12] A. A. Khartov, On weak convergence of quasi-infinitely divisible laws, arXiv: 2204.13667

[13] M. Kutlu, “On a denseness result for quasi-infinitely divisible distributions”, Statist. Probab. Lett., 176:6 (2021), 109139 | DOI | MR

[14] A. Lindner, L. Pan, K. Sato, “On quasi-infinitely divisible distributions”, Trans. Amer. Math. Soc., 370 (2018), 8483–8520 | DOI | MR

[15] A. Lindner, K. Sato, “Properties of stationary distributions of a sequence of generalized Ornstein–Uhlenbeck processes”, Math. Nachr., 284:17–18 (2011), 2225–2248 | DOI | MR

[16] T. Nakamura, “A complete Riemann zeta distribution and the Riemann hypothesis”, Bernoulli, 21:1 (2015), 604–617 | DOI | MR

[17] P. Passeggeri, “Spectral representation of quasi-infinitely divisible processes”, Stoch. Process. Appl., 130:3 (2020), 1735–1791 | DOI | MR

[18] H. Zhang, Y. Liu, B. Li, “Notes on discrete compound Poisson model with applications to risk theory”, Insurance Math. Econom., 59 (2014), 325–336 | DOI | MR