Mean distance between random points on the boundary of a convex body
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 248-261
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider a convex figure $K$ on the plane. Let $\theta(K)$ denote the mean distance between two random points independently and uniformly selected on the boundary of $K$. The main result of the paper is that among all convex shapes of a fixed perimeter, the maximum value of $\theta(K)$ is reached at the circle and only at it. The continuity of $\theta(K)$ in the Hausdorff metric is also proved.
@article{ZNSL_2022_510_a14,
author = {A. S. Tokmachev},
title = {Mean distance between random points on the boundary of a convex body},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {248--261},
year = {2022},
volume = {510},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a14/}
}
A. S. Tokmachev. Mean distance between random points on the boundary of a convex body. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 248-261. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a14/
[1] J. Sylvester, “Problem 1491”, The Educational Times, 1864
[2] W. Blaschke, “Über affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester äus der Theorie der geometrischen Wahrscheinlichkeiten”, Ber. Verh. Sáchs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 69 (1917), 436–453 | MR
[3] G. Bonnet, A. Gusakova, Ch. Thäle, D. Zaporozhets, “Sharp inequalities for the mean distance of random points in convex bodies”, Adv. Math., 326 (2021) | MR
[4] S. N. Majumdar, A. Comtet, J. Randon-Furling, “Random convex hulls and extreme value statistics”, J. Statist. Phys., 138 (2010), 955–1009 | DOI | MR
[5] A. Hurwitz, “Sur le probleme des isoperimetres”, CR Acad. Sci. Paris, 132 (1901), 401–403