Mean distance between random points on the boundary of a convex body
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 248-261

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a convex figure $K$ on the plane. Let $\theta(K)$ denote the mean distance between two random points independently and uniformly selected on the boundary of $K$. The main result of the paper is that among all convex shapes of a fixed perimeter, the maximum value of $\theta(K)$ is reached at the circle and only at it. The continuity of $\theta(K)$ in the Hausdorff metric is also proved.
@article{ZNSL_2022_510_a14,
     author = {A. S. Tokmachev},
     title = {Mean distance between random points on the boundary of a convex body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {248--261},
     publisher = {mathdoc},
     volume = {510},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a14/}
}
TY  - JOUR
AU  - A. S. Tokmachev
TI  - Mean distance between random points on the boundary of a convex body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 248
EP  - 261
VL  - 510
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a14/
LA  - ru
ID  - ZNSL_2022_510_a14
ER  - 
%0 Journal Article
%A A. S. Tokmachev
%T Mean distance between random points on the boundary of a convex body
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 248-261
%V 510
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a14/
%G ru
%F ZNSL_2022_510_a14
A. S. Tokmachev. Mean distance between random points on the boundary of a convex body. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 248-261. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a14/