Convex hulls of random vectors with regularly varying distribution
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 225-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We express the property of a random vector to have a regularly varying distribution in terms of the weak convergence of the convex hull of its normalized independent copies to the convex hull of the Poisson point process.
@article{ZNSL_2022_510_a13,
     author = {E. N. Simarova},
     title = {Convex hulls of random vectors with regularly varying distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {225--247},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a13/}
}
TY  - JOUR
AU  - E. N. Simarova
TI  - Convex hulls of random vectors with regularly varying distribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 225
EP  - 247
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a13/
LA  - ru
ID  - ZNSL_2022_510_a13
ER  - 
%0 Journal Article
%A E. N. Simarova
%T Convex hulls of random vectors with regularly varying distribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 225-247
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a13/
%G ru
%F ZNSL_2022_510_a13
E. N. Simarova. Convex hulls of random vectors with regularly varying distribution. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 225-247. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a13/

[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR

[2] S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007 | MR

[3] S. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer Science Business Media, New York, 2008 | MR

[4] S. Resnick, “Point processes, regular variation and weak convergence”, Adv. Appl. Probab., 18:1 (1986), 66–138 | DOI | MR

[5] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer, Berlin–Heidelberg, 2008 | MR

[6] N. Bingham, C. Goldie, J. Teugels, Regular Variation, Cambridge University Press, 1989 | MR

[7] J. Karamata, “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bull. Soc. Math. France, 61 (1933), 55–62 | DOI | MR

[8] L. de Haan, “Multivariate regular variation and applications in probability theory”, Multivariate Analysis, v. VI, ed. P. R. Krishnaiah, Elsevier, Pittsburgh, 1985, 281–288 | MR

[9] M. Meerschaert, “Regular variation and domains of attraction in $\mathbb{R}^k$”, Stat. Prob. Lett., 4 (1986), 43–45 | DOI | MR

[10] M. Meerschaert, “Regular variation in $\mathbb{R}^k$”, Proc. Am. Math. Soc., 102 (1988), 341–348 | MR

[11] S. Molchanov, “On regularly varying multivalued functions”, Stability Problems for Stochastic Models, eds. V. Kalashnikov et al., Springer-Verlag, Berlin, 1993, 121–129 | DOI | MR

[12] A. Yakymiv, “Tauberian theorems and asymptotics of infinitely divisible distributions in a cone”, Theor. Probab. Appl., 48:3 (2004), 493–505 | DOI | MR

[13] A. Yakymiv, “Multivariate regular variation in probability theory”, J. Math. Sci., 246 (2020), 580–586 | DOI | MR

[14] M. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Science Business Media, 2012 | MR

[15] P. Billingsley, Weak Convergence of Measures: Applications in Probability, SIAM, Philadelphia, 1971 | MR

[16] O. Kallenberg, Foundations of Modern Probability, Springer Science Business Media, New York, 1997 | MR