On a probabilistic approximation of a group of unitary operators
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 211-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a probabilistic approximation of the Cauchy problem solution for a high-order Schrödinger equation with bounded potential in the form of expectations of functionals of a point random field.
@article{ZNSL_2022_510_a12,
     author = {M. V. Platonova},
     title = {On a probabilistic approximation of a group of unitary operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--224},
     publisher = {mathdoc},
     volume = {510},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a12/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - On a probabilistic approximation of a group of unitary operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 211
EP  - 224
VL  - 510
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a12/
LA  - ru
ID  - ZNSL_2022_510_a12
ER  - 
%0 Journal Article
%A M. V. Platonova
%T On a probabilistic approximation of a group of unitary operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 211-224
%V 510
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a12/
%G ru
%F ZNSL_2022_510_a12
M. V. Platonova. On a probabilistic approximation of a group of unitary operators. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 211-224. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a12/