New result on the behaviour of Gaussian maxima in terms of the covariance function
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 201-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is a well-known result by Berman [1] that if the covariance function $r(n)$ of a stationary centered Gaussian sequence tends to zero as $n$ tends to infinity, then the maximum of its first $n$ elements is $\sqrt{2\log(n)}(1+o(1))$ almost surely. In this work we discuss whether or not the Cesàro convergence of $|r(n)|$ to zero necessarily implies the same asymptotic.
@article{ZNSL_2022_510_a11,
     author = {S. M. Novikov},
     title = {New result on the behaviour of {Gaussian} maxima in terms of the covariance function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {201--210},
     year = {2022},
     volume = {510},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a11/}
}
TY  - JOUR
AU  - S. M. Novikov
TI  - New result on the behaviour of Gaussian maxima in terms of the covariance function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 201
EP  - 210
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a11/
LA  - ru
ID  - ZNSL_2022_510_a11
ER  - 
%0 Journal Article
%A S. M. Novikov
%T New result on the behaviour of Gaussian maxima in terms of the covariance function
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 201-210
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a11/
%G ru
%F ZNSL_2022_510_a11
S. M. Novikov. New result on the behaviour of Gaussian maxima in terms of the covariance function. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 201-210. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a11/

[1] S. M. Berman, “Limit theorems for the maximum term in stationary sequences”, Ann. Math. Statist., 35 (1964), 502–516 | DOI | MR

[2] I. P. Cornfeld, Ya. G. Sinai, S. V. Fomin, Ergodic Theory, Nauka, M., 1980 | MR

[3] J. L. Doob, Stochastic Processes, Wiley, New York, 1953 | MR

[4] R. J. Adler, J. E. Taylor, Random Fields and Geometry, Springer, New York, 2007 | MR

[5] A. Tadevosyan, Gaussian Assignment Process, bachelor thesis, 2021

[6] G. Mordant and J. Segers, “Maxima and near-maxima of a Gaussian random assignment field”, Statist. Probab. Lett., 173 (2021), 109087, 8 pp. | DOI | MR