New result on the behaviour of Gaussian maxima in terms of the covariance function
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 201-210
Cet article a éte moissonné depuis la source Math-Net.Ru
It is a well-known result by Berman [1] that if the covariance function $r(n)$ of a stationary centered Gaussian sequence tends to zero as $n$ tends to infinity, then the maximum of its first $n$ elements is $\sqrt{2\log(n)}(1+o(1))$ almost surely. In this work we discuss whether or not the Cesàro convergence of $|r(n)|$ to zero necessarily implies the same asymptotic.
@article{ZNSL_2022_510_a11,
author = {S. M. Novikov},
title = {New result on the behaviour of {Gaussian} maxima in terms of the covariance function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--210},
year = {2022},
volume = {510},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a11/}
}
S. M. Novikov. New result on the behaviour of Gaussian maxima in terms of the covariance function. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 201-210. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a11/
[1] S. M. Berman, “Limit theorems for the maximum term in stationary sequences”, Ann. Math. Statist., 35 (1964), 502–516 | DOI | MR
[2] I. P. Cornfeld, Ya. G. Sinai, S. V. Fomin, Ergodic Theory, Nauka, M., 1980 | MR
[3] J. L. Doob, Stochastic Processes, Wiley, New York, 1953 | MR
[4] R. J. Adler, J. E. Taylor, Random Fields and Geometry, Springer, New York, 2007 | MR
[5] A. Tadevosyan, Gaussian Assignment Process, bachelor thesis, 2021
[6] G. Mordant and J. Segers, “Maxima and near-maxima of a Gaussian random assignment field”, Statist. Probab. Lett., 173 (2021), 109087, 8 pp. | DOI | MR