@article{ZNSL_2022_510_a1,
author = {N. {\CYRM}. {\CYRV}{\cyra}b{\cyra}y{\cyra}n and M. S. Ginovyan},
title = {On the prediction error for singular stationary processes and transfinite diameters of related sets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {28--50},
year = {2022},
volume = {510},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a1/}
}
TY - JOUR AU - N. М. Ваbаyаn AU - M. S. Ginovyan TI - On the prediction error for singular stationary processes and transfinite diameters of related sets JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 28 EP - 50 VL - 510 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a1/ LA - en ID - ZNSL_2022_510_a1 ER -
N. М. Ваbаyаn; M. S. Ginovyan. On the prediction error for singular stationary processes and transfinite diameters of related sets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 28-50. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a1/
[1] N. M. Babayan, “On the asymptotic behavior of prediction error”, Zap. Nauchn. Semin. LOMI, 130, 1983, 11–24 | MR
[2] N. M. Babayan, “On asymptotic behavior of the prediction error in the singular case”, Theory Probab. Appl., 29:1 (1985), 147–150 | DOI | MR
[3] N. M. Babayan, M. S. Ginovyan, “On hyperbolic decay of prediction error variance for deterministic stationary sequences”, J. Cont. Math. Anal., 55:2 (2020), 76–95 | DOI | MR
[4] N. M. Babayan, M. S. Ginovyan, “On asymptotic behavior of the prediction error for a class of deterministic stationary sequences”, Acta Math. Hungar. | DOI | MR
[5] N. M. Babayan, M. S. Ginovyan, M. S. Taqqu, “Extensions of Rosenblatt's results on the asymptotic behavior of the prediction error for deterministic stationary sequences”, J. Time Ser. Anal., 42 (2021), 622–652 | DOI | MR
[6] N. H. Bingham, “Szegő's theorem and its probabilistic descendants”, Probab. Surveys, 9 (2012), 287–324 | MR
[7] L. D. Davisson, “Prediction of time series from finite past”, J. Soc. Indust. Appl. Math., 13:3 (1965), 819–826 | DOI | MR
[8] M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mlt ganzzahligen Koeffizienten”, Math. Z., 17 (1923), 228–249 | DOI | MR
[9] M. Fekete, “Über den transfiniten Durchmesser ebener Punktmengen. Zweite Mitteilung”, Math. Z., 32 (1930), 215–221 | DOI | MR
[10] M. I. Fortus, “Prediction of a stationary time series with the spectrum vanishing on an interval”, Akademiia Nauk SSSR, Izvestiia, Fizika Atmosfery i Okeana, 26 (1990), 1267–1274
[11] M. S. Ginovian, “Asymptotic behavior of the prediction error for stationary random sequences”, J. Cont. Math. Anal., 34:1 (1999), 14–33 | MR
[12] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, AMS, Providence, 1969 | MR
[13] U. Grenander, G. Szegő, Toeplitz Forms and Their Applications, University of California Press, Berkeley–Los Angeles, 1958 | MR
[14] M. Kac, W. L. Murdoch, G. Szegö, “On the eigenvalues of certain Hermitian forms”, Rational Mech. Anal., 9 (1953), 767–800 | MR
[15] W. J. JR. Pierson, “Wind generated gravity waves”, Advances in Geophysics, 2 (1955), 93–178 | DOI | MR
[16] M. Pourahmadi, “Remarks on extreme eigenvalues of Toeplitz matrices”, Internat. J. Math. $\$ Math. Sci., 11:1 (1988), 23–26 | DOI | MR
[17] R. M. Robinson, “On the transfinite diameters of some related sets”, Math. Z., 108 (1969), 377–380 | DOI | MR
[18] M. Rosenblatt, “Some purely deterministic processes”, J. Math. Mech., 6:6 (1957), 801–810 | MR
[19] S. Serra, “On the extreme eigenvalues of Hermitian (block) Toeplitz matrices”, Lnear Algebra Appl., 270 (1998), 109–129 | DOI | MR
[20] S. Serra, How bad can positive definite Toeplitz matrices be?, Numder. Func. Anal. Optimiz., 21 (2000), 255–261 | DOI | MR
[21] G. Szegő, “Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören”, Math. Z., 9 (1921), 218–270 | DOI | MR
[22] M. Tsuji, Potential Theory in Modern Function Theory, 2nd edition, Chelsea Pub. Co, New York, 1975 | MR