On the prediction error for singular stationary processes and transfinite diameters of related sets
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 28-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the prediction problem for discrete-time singular stationary processes with spectral density $f$ and related topics in the case where $f$ vanishes on a set of positive Lebesgue measure. We first discuss the Fekete theorem and its extension due to Robinson on the transfinite diameters of related sets, and prove an extension of Robinson's theorem. For some special sets the transfinite diameters are calculated explicitly by using Robinson's theorem. The obtained results are applied to describe the asymptotic behavior of the prediction error. Then we discuss the Davisson theorem concerning upper bound for the prediction error, and prove its extension. As an application, we obtain estimates for the minimal eigenvalue of a Toeplitz matrix associated with spectral density $f$.
@article{ZNSL_2022_510_a1,
     author = {N. {\CYRM}. {\CYRV}{\cyra}b{\cyra}y{\cyra}n and M. S. Ginovyan},
     title = {On the prediction error for singular stationary processes and transfinite diameters of related sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--50},
     year = {2022},
     volume = {510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a1/}
}
TY  - JOUR
AU  - N. М. Ваbаyаn
AU  - M. S. Ginovyan
TI  - On the prediction error for singular stationary processes and transfinite diameters of related sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 28
EP  - 50
VL  - 510
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a1/
LA  - en
ID  - ZNSL_2022_510_a1
ER  - 
%0 Journal Article
%A N. М. Ваbаyаn
%A M. S. Ginovyan
%T On the prediction error for singular stationary processes and transfinite diameters of related sets
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 28-50
%V 510
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a1/
%G en
%F ZNSL_2022_510_a1
N. М. Ваbаyаn; M. S. Ginovyan. On the prediction error for singular stationary processes and transfinite diameters of related sets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 28-50. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a1/

[1] N. M. Babayan, “On the asymptotic behavior of prediction error”, Zap. Nauchn. Semin. LOMI, 130, 1983, 11–24 | MR

[2] N. M. Babayan, “On asymptotic behavior of the prediction error in the singular case”, Theory Probab. Appl., 29:1 (1985), 147–150 | DOI | MR

[3] N. M. Babayan, M. S. Ginovyan, “On hyperbolic decay of prediction error variance for deterministic stationary sequences”, J. Cont. Math. Anal., 55:2 (2020), 76–95 | DOI | MR

[4] N. M. Babayan, M. S. Ginovyan, “On asymptotic behavior of the prediction error for a class of deterministic stationary sequences”, Acta Math. Hungar. | DOI | MR

[5] N. M. Babayan, M. S. Ginovyan, M. S. Taqqu, “Extensions of Rosenblatt's results on the asymptotic behavior of the prediction error for deterministic stationary sequences”, J. Time Ser. Anal., 42 (2021), 622–652 | DOI | MR

[6] N. H. Bingham, “Szegő's theorem and its probabilistic descendants”, Probab. Surveys, 9 (2012), 287–324 | MR

[7] L. D. Davisson, “Prediction of time series from finite past”, J. Soc. Indust. Appl. Math., 13:3 (1965), 819–826 | DOI | MR

[8] M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mlt ganzzahligen Koeffizienten”, Math. Z., 17 (1923), 228–249 | DOI | MR

[9] M. Fekete, “Über den transfiniten Durchmesser ebener Punktmengen. Zweite Mitteilung”, Math. Z., 32 (1930), 215–221 | DOI | MR

[10] M. I. Fortus, “Prediction of a stationary time series with the spectrum vanishing on an interval”, Akademiia Nauk SSSR, Izvestiia, Fizika Atmosfery i Okeana, 26 (1990), 1267–1274

[11] M. S. Ginovian, “Asymptotic behavior of the prediction error for stationary random sequences”, J. Cont. Math. Anal., 34:1 (1999), 14–33 | MR

[12] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, AMS, Providence, 1969 | MR

[13] U. Grenander, G. Szegő, Toeplitz Forms and Their Applications, University of California Press, Berkeley–Los Angeles, 1958 | MR

[14] M. Kac, W. L. Murdoch, G. Szegö, “On the eigenvalues of certain Hermitian forms”, Rational Mech. Anal., 9 (1953), 767–800 | MR

[15] W. J. JR. Pierson, “Wind generated gravity waves”, Advances in Geophysics, 2 (1955), 93–178 | DOI | MR

[16] M. Pourahmadi, “Remarks on extreme eigenvalues of Toeplitz matrices”, Internat. J. Math. $\$ Math. Sci., 11:1 (1988), 23–26 | DOI | MR

[17] R. M. Robinson, “On the transfinite diameters of some related sets”, Math. Z., 108 (1969), 377–380 | DOI | MR

[18] M. Rosenblatt, “Some purely deterministic processes”, J. Math. Mech., 6:6 (1957), 801–810 | MR

[19] S. Serra, “On the extreme eigenvalues of Hermitian (block) Toeplitz matrices”, Lnear Algebra Appl., 270 (1998), 109–129 | DOI | MR

[20] S. Serra, How bad can positive definite Toeplitz matrices be?, Numder. Func. Anal. Optimiz., 21 (2000), 255–261 | DOI | MR

[21] G. Szegő, “Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören”, Math. Z., 9 (1921), 218–270 | DOI | MR

[22] M. Tsuji, Potential Theory in Modern Function Theory, 2nd edition, Chelsea Pub. Co, New York, 1975 | MR