Probabilistic approximation of a Riemann–Liouville type operator with a stability index greater than two
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 5-27
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we introduce Riemann-Liouville type operators for the complex index $\alpha$. A probabilistic approximation of the solution of the Cauchy problem for an evolutionary equation with a Riemann–Liouville type operator for a complex $\alpha$ is constructed.
@article{ZNSL_2022_510_a0,
author = {I. A. Alekseev},
title = {Probabilistic approximation of a {Riemann{\textendash}Liouville} type operator with a stability index greater than two},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--27},
year = {2022},
volume = {510},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a0/}
}
TY - JOUR AU - I. A. Alekseev TI - Probabilistic approximation of a Riemann–Liouville type operator with a stability index greater than two JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 5 EP - 27 VL - 510 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a0/ LA - ru ID - ZNSL_2022_510_a0 ER -
I. A. Alekseev. Probabilistic approximation of a Riemann–Liouville type operator with a stability index greater than two. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 32, Tome 510 (2022), pp. 5-27. http://geodesic.mathdoc.fr/item/ZNSL_2022_510_a0/
[1] I. A. Alekseev, “Ustoichivye sluchainye velichiny s kompleksnym indeksom ustoichivosti, II”, Teoriya veroyatnostei i ee primeneniya (to appear)
[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[3] M. V. Platonova, “Veroyatnostnoe predstavlenie resheniya zadachi Koshi dlya evolyutsionnogo uravneniya s operatorom Rimana-Liuvillya”, Teoriya veroyatn. i ee primen., 61:3 (2013), 417–438
[4] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964
[5] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013 | MR