@article{ZNSL_2021_509_a9,
author = {D. A. Lyozin and A. N. Starodubtsev},
title = {Deformation of the {Poisson} structure of a point particle due to gravitational back reaction},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {153--175},
year = {2021},
volume = {509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a9/}
}
TY - JOUR AU - D. A. Lyozin AU - A. N. Starodubtsev TI - Deformation of the Poisson structure of a point particle due to gravitational back reaction JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 153 EP - 175 VL - 509 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a9/ LA - en ID - ZNSL_2021_509_a9 ER -
D. A. Lyozin; A. N. Starodubtsev. Deformation of the Poisson structure of a point particle due to gravitational back reaction. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 153-175. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a9/
[1] M. Bronstein, Phys. Zeitschr. Sow., 9 (1936)
[2] E. Witten, “$2 + 1$ dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311:1 (1988), 1–19 | DOI | MR
[3] G. 't Hooft, “Canonical quantization of gravitating point particles in $2+1$ dimensions”, Class. Quantum Grav., 10 (1993), 1653 | DOI | Zbl
[4] G. 't Hooft, “Quantization of point particles in $(2+1)$-dimensional gravity and spacetime discreteness”, Class. Quantum Grav., 13 (1996), 1023 | DOI | Zbl
[5] H. J. Matschull, M. Welling, Class. Quant. Grav., 15 (1998), Quantum mechanics of a point particle in 2+1 dimensional gravity, arXiv: grqc/9708054 | DOI | MR
[6] Abhay Ashtekar, Parampreet Singh, “Loop Quantum Cosmology: A Status Report”, Class. Quant. Grav., 28 (2011), arXiv: 1108.0893 | Zbl
[7] Alexander A. Andrianov, O. Oleg, Novikov, Chen Lan, “Quantum cosmology of multifield scalar matter: Some exact solutions”, Theor. Math. Phys. 184 (2015), 1224–1233, Teor.Mat.Fiz., 184:3 (2015), 380–391, arXiv: 1503.05527 | MR | Zbl
[8] W. Israel, “Singular hypersurfaces and thin shells in general relativity”, Il Nuovo Cimento, B, 44 (1967)
[9] Kuchař, V. Karel, “Geometrodynamics of Schwarzschild black holes”, Phys. Rev. D, 50 (1994)
[10] P. Hájíček, “Spherically symmetric gravitating shell as a reparametrization invariant system”, Phys. Rev. D, 57 (1998)
[11] Jorma Louko, Bernard F. Whiting, John L. Friedman, “Hamiltonian space-time dynamics with a spherical null dust shell”, Phys. Rev. D, 57 (1998)
[12] P. Hájíček, C. Kiefer, “Embedding variables in the canonical theory of gravitating shells”, Nucl. Phys. B, 603 (2001) | Zbl
[13] V. A. Berezin, A. M. Boyarsky, A. Yu. Neronov, Phys. Rev. D, 57 (1998), arXiv: gr-qc/9708060 | DOI
[14] V. Berezin, Int. J. Mod. Phys., A17 (2002), 979–988, arXiv: gr-qc/0112022 | DOI | Zbl
[15] J. Wess, B. Zumino, “Consequences of anomalous ward identities”, Phys. Lett. B, 37 (1971), 95 | DOI
[16] E. Witten, “Global aspects of current algebra”, Nucl. Phys. B, 223:2 (1983), 422–432 | DOI
[17] A. Y. Alekseev, A. Z. Malkin, “Symplectic structure of the moduli space of at connection on a Riemann surface”, Comm. Math. Phys., 169:99 (1995), arXiv: hep-th/9312004
[18] C. Meusburger, B. J. Schroers, “Phase space structure of Chern-Simons theory with a non-standard puncture”, Nucl. Phys. B, 738:425 (2006), arXiv: hep-th/0505143 | MR | Zbl
[19] I. M. Gel'fand, M. A. Naimark, “Unitary representations of the classical groups”, Trudy Mat. Inst. Steklov. Acad. Sci. USSR, 36, M.–L., 1950, 3–288
[20] A. Alexander, A. Andrianov, Y. Elmahalawy, A. Starodubtsev, “Quantum Analysis of BTZ Black Hole Formation Due to the Collapse of a Dust Shell”, Universe, 6:11 (2011), 201, arXiv: 2011.07971 [gr-qc]
[21] Teor. Mat. Fiz., 200:3 (2019), 399–414, arXiv: 1812.11425 [gr-qc] | DOI | DOI | Zbl