Deformation of the Poisson structure of a point particle due to gravitational back reaction
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 153-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The dynamics of a massive particle in a frame of a test particle in 3+1 spacetime dimensions is considered with gravitational interaction taken into account. The total action (gravity+particles) collapses to a boundary separating the massive particle and the test particle, and is further reduced to a finite dimensional action depending only on relative particle coordinates and momenta. It turns out that the momentum space is a coadjoint orbit of the Lorentz group. The momentum space is thus curved and its curvature falls off with the particle relative distance according to the Newton law. This defines the modified form of the Poisson brackets. At the quantum level, this results in non-commutativity and partial discreteness in coordinate space.
@article{ZNSL_2021_509_a9,
     author = {D. A. Lyozin and A. N. Starodubtsev},
     title = {Deformation of the {Poisson} structure of a point particle due to gravitational back reaction},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--175},
     year = {2021},
     volume = {509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a9/}
}
TY  - JOUR
AU  - D. A. Lyozin
AU  - A. N. Starodubtsev
TI  - Deformation of the Poisson structure of a point particle due to gravitational back reaction
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 153
EP  - 175
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a9/
LA  - en
ID  - ZNSL_2021_509_a9
ER  - 
%0 Journal Article
%A D. A. Lyozin
%A A. N. Starodubtsev
%T Deformation of the Poisson structure of a point particle due to gravitational back reaction
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 153-175
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a9/
%G en
%F ZNSL_2021_509_a9
D. A. Lyozin; A. N. Starodubtsev. Deformation of the Poisson structure of a point particle due to gravitational back reaction. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 153-175. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a9/

[1] M. Bronstein, Phys. Zeitschr. Sow., 9 (1936)

[2] E. Witten, “$2 + 1$ dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311:1 (1988), 1–19 | DOI | MR

[3] G. 't Hooft, “Canonical quantization of gravitating point particles in $2+1$ dimensions”, Class. Quantum Grav., 10 (1993), 1653 | DOI | Zbl

[4] G. 't Hooft, “Quantization of point particles in $(2+1)$-dimensional gravity and spacetime discreteness”, Class. Quantum Grav., 13 (1996), 1023 | DOI | Zbl

[5] H. J. Matschull, M. Welling, Class. Quant. Grav., 15 (1998), Quantum mechanics of a point particle in 2+1 dimensional gravity, arXiv: grqc/9708054 | DOI | MR

[6] Abhay Ashtekar, Parampreet Singh, “Loop Quantum Cosmology: A Status Report”, Class. Quant. Grav., 28 (2011), arXiv: 1108.0893 | Zbl

[7] Alexander A. Andrianov, O. Oleg, Novikov, Chen Lan, “Quantum cosmology of multifield scalar matter: Some exact solutions”, Theor. Math. Phys. 184 (2015), 1224–1233, Teor.Mat.Fiz., 184:3 (2015), 380–391, arXiv: 1503.05527 | MR | Zbl

[8] W. Israel, “Singular hypersurfaces and thin shells in general relativity”, Il Nuovo Cimento, B, 44 (1967)

[9] Kuchař, V. Karel, “Geometrodynamics of Schwarzschild black holes”, Phys. Rev. D, 50 (1994)

[10] P. Hájíček, “Spherically symmetric gravitating shell as a reparametrization invariant system”, Phys. Rev. D, 57 (1998)

[11] Jorma Louko, Bernard F. Whiting, John L. Friedman, “Hamiltonian space-time dynamics with a spherical null dust shell”, Phys. Rev. D, 57 (1998)

[12] P. Hájíček, C. Kiefer, “Embedding variables in the canonical theory of gravitating shells”, Nucl. Phys. B, 603 (2001) | Zbl

[13] V. A. Berezin, A. M. Boyarsky, A. Yu. Neronov, Phys. Rev. D, 57 (1998), arXiv: gr-qc/9708060 | DOI

[14] V. Berezin, Int. J. Mod. Phys., A17 (2002), 979–988, arXiv: gr-qc/0112022 | DOI | Zbl

[15] J. Wess, B. Zumino, “Consequences of anomalous ward identities”, Phys. Lett. B, 37 (1971), 95 | DOI

[16] E. Witten, “Global aspects of current algebra”, Nucl. Phys. B, 223:2 (1983), 422–432 | DOI

[17] A. Y. Alekseev, A. Z. Malkin, “Symplectic structure of the moduli space of at connection on a Riemann surface”, Comm. Math. Phys., 169:99 (1995), arXiv: hep-th/9312004

[18] C. Meusburger, B. J. Schroers, “Phase space structure of Chern-Simons theory with a non-standard puncture”, Nucl. Phys. B, 738:425 (2006), arXiv: hep-th/0505143 | MR | Zbl

[19] I. M. Gel'fand, M. A. Naimark, “Unitary representations of the classical groups”, Trudy Mat. Inst. Steklov. Acad. Sci. USSR, 36, M.–L., 1950, 3–288

[20] A. Alexander, A. Andrianov, Y. Elmahalawy, A. Starodubtsev, “Quantum Analysis of BTZ Black Hole Formation Due to the Collapse of a Dust Shell”, Universe, 6:11 (2011), 201, arXiv: 2011.07971 [gr-qc]

[21] Teor. Mat. Fiz., 200:3 (2019), 399–414, arXiv: 1812.11425 [gr-qc] | DOI | DOI | Zbl

[22] Teor. Mat. Fiz., 190:3 (2017) | DOI | MR | Zbl