On Gustafson integrals for the group $\mathrm{SL}(2,\mathbb{R})$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 113-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we calculate the Gustafson integrals of the first and second types for the group $\mathrm{SL}(2,\mathbb{R})$ in the case of an integration domain of a special form. The definitions of the analogs of the sine, cosine and Gamma functions are given, and their main properties are formulated. The conclusion lists open questions.
@article{ZNSL_2021_509_a7,
     author = {A. V. Ivanov},
     title = {On {Gustafson} integrals for the group $\mathrm{SL}(2,\mathbb{R})$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--122},
     year = {2021},
     volume = {509},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a7/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On Gustafson integrals for the group $\mathrm{SL}(2,\mathbb{R})$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 113
EP  - 122
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a7/
LA  - ru
ID  - ZNSL_2021_509_a7
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On Gustafson integrals for the group $\mathrm{SL}(2,\mathbb{R})$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 113-122
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a7/
%G ru
%F ZNSL_2021_509_a7
A. V. Ivanov. On Gustafson integrals for the group $\mathrm{SL}(2,\mathbb{R})$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 113-122. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a7/

[1] R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23 (1992), 525–551 | DOI | MR | Zbl

[2] R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341 (1994), 69–119 | MR | Zbl

[3] R. A. Gustafson, “Some $q$-beta integrals on $SU(n)$ and $Sp(n)$ that generalize the Askey–Wilson and Nasrallah–Rahman integrals”, SIAM J. Math. Anal., 25 (1994), 441–449 | DOI | MR | Zbl

[4] J. V. Stokman, “On BC type basic hypergeometric orthogonal polynomials”, Trans. Amer. Math. Soc., 352 (2000), 1527–1579 | DOI | MR | Zbl

[5] V. P. Spiridonov, G. S. Vartanov, “Elliptic hypergeometry of supersymmetric dualities”, Comm. Math. Phys., 304 (2011), 797–874 | DOI | MR | Zbl

[6] V. P. Spiridonov, “Theta hypergeometric integrals”, St. Petersburg Math. J., 15 (2003), 929–967 | DOI

[7] V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132 | DOI | MR | Zbl

[8] V. P. Spiridonov, “Short proofs of the elliptic beta integrals”, Ramanujan J., 13 (2007), 265–283 | DOI | MR | Zbl

[9] S. E. Derkachov, A. N. Manashov, “Spin Chains and Gustafson's Integrals”, J. Phys. A, Math. Theor., 50 (2017), 294006 | DOI | Zbl

[10] S. E. Derkachov, A. N. Manashov, P. A. Valinevich, “Gustafson integrals for $SL(2, \mathbb{C})$ spin magnet”, J. Phys. A, Math. Theor., 50 (2017), 294007 | DOI | Zbl

[11] S. E. Derkachov, A. N. Manashov, P. A. Valinevich, “$SL(2, \mathbb{C})$ Gustafson Integrals”, SIGMA, 14 (2018), 030 | Zbl

[12] S. E. Derkachov, A. N. Manashov, “On Complex Gamma-Function Integrals”, SIGMA, 16 (2020), 003 | Zbl

[13] I. M. Gel'fand, M. I. Graev, N. Ya. Vilenkin, Generalized functions, v. 5, Integral geometry and representation theory, Academic Press, New York–London, 1966, 499 pp. | Zbl

[14] M. Kirch, A. N. Manashov, “Noncompact $SL(2,\mathbb{R})$ spin chain”, JHEP, 0406 (2004), 035 | DOI | MR

[15] A. V. Ivanov, “On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL(2,\mathbb{R})$”, J. Math. Sci. (N. Y.), 242:5 (2019), 692–700 | DOI | MR | Zbl

[16] S. C. Milne, “A $q$-analog of the Gauss summation theorem for hypergeometric series in $U(n)$”, Adv. Math., 72 (1988), 59–131 | DOI | Zbl