Two relations for the antisymmetrizer in the Hecke algebra
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 89-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two relations for the antisymmetrizer in the Hecke algebra and derive certain restrictions imposed by these relations on unitary representations of the Hecke algebra on tensor powers of the space ${\mathbb C}^n$.
@article{ZNSL_2021_509_a5,
     author = {A. G. Bytsko},
     title = {Two relations for the antisymmetrizer in the {Hecke} algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {509},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/}
}
TY  - JOUR
AU  - A. G. Bytsko
TI  - Two relations for the antisymmetrizer in the Hecke algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 89
EP  - 98
VL  - 509
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/
LA  - ru
ID  - ZNSL_2021_509_a5
ER  - 
%0 Journal Article
%A A. G. Bytsko
%T Two relations for the antisymmetrizer in the Hecke algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 89-98
%V 509
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/
%G ru
%F ZNSL_2021_509_a5
A. G. Bytsko. Two relations for the antisymmetrizer in the Hecke algebra. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 89-98. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/