Voir la notice du chapitre de livre
@article{ZNSL_2021_509_a5,
author = {A. G. Bytsko},
title = {Two relations for the antisymmetrizer in the {Hecke} algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {89--98},
year = {2021},
volume = {509},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/}
}
A. G. Bytsko. Two relations for the antisymmetrizer in the Hecke algebra. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 89-98. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/
[1] A. Bytsko, “A relation for the Jones-Wenzl projector and tensor space representations of the Temperley–Lieb algebra”, Linear and Multilinear Algebra, 68 (2020), 2239–2253 | DOI | MR | Zbl
[2] D.I. Gurevich, “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 | Zbl
[3] M. Jimbo, “A q-analogue of $U(gl(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252 | DOI | MR | Zbl
[4] G. Lechner, U. Pennig, S. Wood, “Yang–Baxter representations of the infinite symmetric group”, Adv. Math., 355 (2019), 106769 | DOI | MR | Zbl
[5] H. Wenzl, “Hecke algebras of type $A_n$ and subfactors”, Inv. Math., 92 (1988), 349–383 | DOI | MR | Zbl