Two relations for the antisymmetrizer in the Hecke algebra
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 89-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove two relations for the antisymmetrizer in the Hecke algebra and derive certain restrictions imposed by these relations on unitary representations of the Hecke algebra on tensor powers of the space ${\mathbb C}^n$.
@article{ZNSL_2021_509_a5,
     author = {A. G. Bytsko},
     title = {Two relations for the antisymmetrizer in the {Hecke} algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--98},
     year = {2021},
     volume = {509},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/}
}
TY  - JOUR
AU  - A. G. Bytsko
TI  - Two relations for the antisymmetrizer in the Hecke algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 89
EP  - 98
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/
LA  - ru
ID  - ZNSL_2021_509_a5
ER  - 
%0 Journal Article
%A A. G. Bytsko
%T Two relations for the antisymmetrizer in the Hecke algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 89-98
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/
%G ru
%F ZNSL_2021_509_a5
A. G. Bytsko. Two relations for the antisymmetrizer in the Hecke algebra. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 89-98. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a5/

[1] A. Bytsko, “A relation for the Jones-Wenzl projector and tensor space representations of the Temperley–Lieb algebra”, Linear and Multilinear Algebra, 68 (2020), 2239–2253 | DOI | MR | Zbl

[2] D.I. Gurevich, “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 | Zbl

[3] M. Jimbo, “A q-analogue of $U(gl(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252 | DOI | MR | Zbl

[4] G. Lechner, U. Pennig, S. Wood, “Yang–Baxter representations of the infinite symmetric group”, Adv. Math., 355 (2019), 106769 | DOI | MR | Zbl

[5] H. Wenzl, “Hecke algebras of type $A_n$ and subfactors”, Inv. Math., 92 (1988), 349–383 | DOI | MR | Zbl