Five-vertex model and lozenge tilings of a hexagon with a dent
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 71-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the five-vertex model on a regular square lattice of the size $L \times M$ with boundary conditions fixed in such a way that configurations of the model are in one-to-one correspondence with the lozenge tilings of the hexagon with a dent. We obtain two determinant representations for the partition function. In the free-fermionic limit, this result implies some summation formulae for Schur functions.
@article{ZNSL_2021_509_a4,
     author = {I. N. Burenev},
     title = {Five-vertex model and lozenge tilings of a hexagon with a dent},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--88},
     year = {2021},
     volume = {509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/}
}
TY  - JOUR
AU  - I. N. Burenev
TI  - Five-vertex model and lozenge tilings of a hexagon with a dent
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 71
EP  - 88
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/
LA  - en
ID  - ZNSL_2021_509_a4
ER  - 
%0 Journal Article
%A I. N. Burenev
%T Five-vertex model and lozenge tilings of a hexagon with a dent
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 71-88
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/
%G en
%F ZNSL_2021_509_a4
I. N. Burenev. Five-vertex model and lozenge tilings of a hexagon with a dent. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 71-88. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/

[1] P. W. Kasteleyn, “The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice”, Physica, 27 (1961), 1209–1225 | DOI | Zbl

[2] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating sign matrices and domino tilings. Part II”, J. Algebraic Combin., 1 (1992), 219–234 | DOI | MR | Zbl

[3] N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856 | DOI | MR | Zbl

[4] G. Kuperberg, “Another proof of the alternating sign matrix conjecture”, Int. Math. Res. Notices, 1996:3 (1996), 139–150 | DOI | Zbl

[5] W. H. Mills, D. P. Robbins, H. Rumsey, “Alternating sign matrices and descending plane partitions”, J. Comb. Th. A, 34:3 (1983), 340–359 | DOI | Zbl

[6] E. H. Lieb, “The residual entropy of square ice”, Phys. Rev., 162 (1967), 162–172 | DOI

[7] B. Sutherland, “Exact solution of a two-dimensional model for hydrogen-bonded crystals”, Phys. Rev. Lett., 19 (1967), 103–104 | DOI

[8] R. J. Baxter, Exactly Solvable Models in Statistical Mechanics, Academic Press, San Diego, CA, 1982

[9] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl

[10] L. Pauling, “The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement”, J. Am. Chem. Soc., 57:12 (1935), 2680–2684 | DOI

[11] C. Garrod, “Stochastic models of crystal growth in two dimensions”, Phys. Rev. A, 41 (1990), 4184–4194 | DOI

[12] C. Garrod, A. C. Levi, M. Touzani, “Mapping of crystal growth onto the 6-vertex model”, Solid State Comm., 75 (1990), 375–382 | DOI

[13] H. Y. Huang, F. Y. Wu, H. Kunz, D. Kim, “Interacting dimers on the honeycomb lattice: an exact solution of the five-vertex model”, Physica A, 228:1 (1996), 1–32 | DOI | MR

[14] K. Motegi, K. Sakai, “Vertex models, TASEP and Grothendieck polynomials”, Journal of J. Phys. A: Math. Theor., 46:35 (2013), 355201 | DOI | Zbl

[15] B. Brubaker, V. Buciumas, D. Bump, and H. P. A. Gustafsson, “Colored five-vertex models and demazure atoms”, J. Combin. Theory A, 178 (2021), 105354 | DOI | Zbl

[16] I. N. Burenev, A. G. Pronko, “Determinant formulae for the five-vertex model”, J. Phys. A: Math. Theor., 54 (2021), 055008 | DOI | MR

[17] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | Zbl

[18] N. M. Bogoliubov, “Four-vertex model and random tilings”, Theor. Math. Phys., 155 (2008), 523–535 | DOI | Zbl

[19] N. M. Bogoliubov, T. Nasar, “On the spectrum of the non-Hermitian phase-difference model”, Phys. Lett. A, 234 (1997), 345–350 | DOI | MR | Zbl

[20] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, Oxford, 1995 | Zbl

[21] I. N. Burenev, A. G. Pronko, “Quantum Hamiltonians generated by the R-matrix of the five-vertex model”, Zap. Nauchn. Sem. POMI, 494, 2020, 103–124

[22] A. G. Pronko, “The Five-Vertex Model and Enumerations of Plane Partitions”, J. Math. Sci., 213 (2016), 756–768 | DOI | MR | Zbl