Five-vertex model and lozenge tilings of a hexagon with a dent
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 71-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the five-vertex model on a regular square lattice of the size $L \times M$ with boundary conditions fixed in such a way that configurations of the model are in one-to-one correspondence with the lozenge tilings of the hexagon with a dent. We obtain two determinant representations for the partition function. In the free-fermionic limit, this result implies some summation formulae for Schur functions.
@article{ZNSL_2021_509_a4,
     author = {I. N. Burenev},
     title = {Five-vertex model and lozenge tilings of a hexagon with a dent},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--88},
     publisher = {mathdoc},
     volume = {509},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/}
}
TY  - JOUR
AU  - I. N. Burenev
TI  - Five-vertex model and lozenge tilings of a hexagon with a dent
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 71
EP  - 88
VL  - 509
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/
LA  - en
ID  - ZNSL_2021_509_a4
ER  - 
%0 Journal Article
%A I. N. Burenev
%T Five-vertex model and lozenge tilings of a hexagon with a dent
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 71-88
%V 509
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/
%G en
%F ZNSL_2021_509_a4
I. N. Burenev. Five-vertex model and lozenge tilings of a hexagon with a dent. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 71-88. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/