Five-vertex model and lozenge tilings of a hexagon with a dent
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 71-88
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the five-vertex model on a regular square lattice of the size $L \times M$ with boundary conditions fixed in such a way that configurations of the model are in one-to-one correspondence with the lozenge tilings of the hexagon with a dent. We obtain two determinant representations for the partition function. In the free-fermionic limit, this result implies some summation formulae for Schur functions.
@article{ZNSL_2021_509_a4,
author = {I. N. Burenev},
title = {Five-vertex model and lozenge tilings of a hexagon with a dent},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {71--88},
publisher = {mathdoc},
volume = {509},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/}
}
I. N. Burenev. Five-vertex model and lozenge tilings of a hexagon with a dent. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 71-88. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a4/