Pauli–Villars regularization for some models with singular perturbations
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 54-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show how Pauli–Villars regularization works in the construction of renormalized Hamiltonian for two examplars of quantum systems with singular pertuabations. The systems are the scalar 3-dimensional particle interacting with $\delta$-potential and the infrared extensions of the quadratic forms of the gaussian functional of the ground state in the quantum field theory.
@article{ZNSL_2021_509_a3,
     author = {T. A. Bolokhov},
     title = {Pauli{\textendash}Villars regularization for some models with singular perturbations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--70},
     year = {2021},
     volume = {509},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a3/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Pauli–Villars regularization for some models with singular perturbations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 54
EP  - 70
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a3/
LA  - ru
ID  - ZNSL_2021_509_a3
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Pauli–Villars regularization for some models with singular perturbations
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 54-70
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a3/
%G ru
%F ZNSL_2021_509_a3
T. A. Bolokhov. Pauli–Villars regularization for some models with singular perturbations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 54-70. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a3/

[1] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh ermitovykh operatorov i ee prilozheniya I”, Mat. sb., 20:63 (1947), 431–495 | Zbl

[2] S. Albeverio, F. Gesztesy, R. Hegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, 1988 | Zbl

[3] A. Kiselev, B. Simon, “Rank one perturbations with infinitesimal coupling”, J. Funct. Anal., 130 (1995), 345–356 | DOI | MR | Zbl

[4] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | Zbl

[5] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000

[6] A. Alonso, B. Simon, “The Birman - Krein - Vishik theory of selfadjoint extensions of semibounded operators”, J. Operator Theory, 4 (1980), 251–270 | MR | Zbl

[7] W. Pauli, F. Villars, “On the invariant regularization in relativistic quantum theory”, Rev. Mod. Phys., 21 (1949), 434–444 | DOI | Zbl

[8] F. Gesztesy, E. Tsekanovskii, On Matrix-Valued Herglotz Functions, arXiv: funct-an/9712004

[9] L. D. Faddeev, “Zamechaniya o raskhodimostyakh i razmernoi transmutatsii v teorii Yanga-Millsa”, Teor. mat. fiz., 148 (2006), 133 | Zbl

[10] T. A. Bolokhov, “Infrakrasnye rasshireniya kvadratichnoi formy osnovnogo sostoyaniya skalyarnoi teorii polya”, Zap. nauchn. semin. POMI, 494, 2020, 64

[11] S. Albeverio, P. Kurasov, “Rank one perturbations, approximations and selfadjoint extensions”, J. Funct. Anal., 148 (1997), 152–169 | DOI | MR | Zbl