@article{ZNSL_2021_509_a3,
author = {T. A. Bolokhov},
title = {Pauli{\textendash}Villars regularization for some models with singular perturbations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--70},
year = {2021},
volume = {509},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a3/}
}
T. A. Bolokhov. Pauli–Villars regularization for some models with singular perturbations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 54-70. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a3/
[1] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh ermitovykh operatorov i ee prilozheniya I”, Mat. sb., 20:63 (1947), 431–495 | Zbl
[2] S. Albeverio, F. Gesztesy, R. Hegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, 1988 | Zbl
[3] A. Kiselev, B. Simon, “Rank one perturbations with infinitesimal coupling”, J. Funct. Anal., 130 (1995), 345–356 | DOI | MR | Zbl
[4] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | Zbl
[5] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000
[6] A. Alonso, B. Simon, “The Birman - Krein - Vishik theory of selfadjoint extensions of semibounded operators”, J. Operator Theory, 4 (1980), 251–270 | MR | Zbl
[7] W. Pauli, F. Villars, “On the invariant regularization in relativistic quantum theory”, Rev. Mod. Phys., 21 (1949), 434–444 | DOI | Zbl
[8] F. Gesztesy, E. Tsekanovskii, On Matrix-Valued Herglotz Functions, arXiv: funct-an/9712004
[9] L. D. Faddeev, “Zamechaniya o raskhodimostyakh i razmernoi transmutatsii v teorii Yanga-Millsa”, Teor. mat. fiz., 148 (2006), 133 | Zbl
[10] T. A. Bolokhov, “Infrakrasnye rasshireniya kvadratichnoi formy osnovnogo sostoyaniya skalyarnoi teorii polya”, Zap. nauchn. semin. POMI, 494, 2020, 64
[11] S. Albeverio, P. Kurasov, “Rank one perturbations, approximations and selfadjoint extensions”, J. Funct. Anal., 148 (1997), 152–169 | DOI | MR | Zbl