One-point function of the four-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 39-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the four-vertex model on a finite domain of the square lattice with the so-called scalar-product boundary conditions. It can be described in terms of non-intersecting lattice paths which are additionally restricted in their propagation in one of the two spacial directions. We compute the one-point function measuring the probability to obtain a path on a given lattice edge. We also relate this function with another one-point function which can be regarded as a local anti-ferroelectric order parameter.
@article{ZNSL_2021_509_a2,
     author = {N. M. Bogolyubov and A. G. Pronko},
     title = {One-point function of the four-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--53},
     year = {2021},
     volume = {509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a2/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - A. G. Pronko
TI  - One-point function of the four-vertex model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 39
EP  - 53
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a2/
LA  - en
ID  - ZNSL_2021_509_a2
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A A. G. Pronko
%T One-point function of the four-vertex model
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 39-53
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a2/
%G en
%F ZNSL_2021_509_a2
N. M. Bogolyubov; A. G. Pronko. One-point function of the four-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 39-53. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a2/

[1] W. Li, H. Park, M. Widom, “Finite-size scaling amplitudes in a random tiling model”, J. Phys. A: Math. Gen., 23 (1990), L573–L580 | DOI

[2] W. Li, H. Park, “Logarithmic singularity in the surface free energy near commensurate-incommensurate transitions”, J. Phys. A: Math. Gen., 24 (1991), 257–264 | DOI

[3] N. M. Bogoliubov, “Four-vertex model and random tilings”, Theor. Math. Phys., 155 (2008), 523–535 | DOI | Zbl

[4] N. M. Bogoliubov, “Four-vertex model”, J. Math. Sci. (N.Y.), 151 (2008), 2816–2828 | DOI | MR | Zbl

[5] N. M. Bogolyubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl

[6] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165 | MR | Zbl

[7] J. de Gier, R. Kenyon, S. S. Watson, “Limit shapes for the asymmetric five vertex model”, Commun. Math. Phys., 385 (2021), 793–836 | DOI | Zbl

[8] A. G. Pronko, “The five-vertex model and enumerations of plane partitions”, J. Math. Sci. (N. Y.), 213 (2016), 756–768 | DOI | MR | Zbl

[9] P. Bleher, K. Liechty, “Six-vertex model with partial domain wall boundary conditions: Ferroelectric phase”, J. Math. Phys., 56 (2015), 023302 | DOI | MR | Zbl

[10] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn, Oxford University Press, Oxford, 1995 | Zbl

[11] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | Zbl

[12] F. Colomo, G. Di Giulio, A. G. Pronko, “Six-vertex model on a finite lattice: integral representations for nonlocal correlation functions”, Nucl. Phys. B, 972 (2021), 115535 | DOI | Zbl

[13] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | Zbl

[14] M. L. Mehta, Random Matrices, 3rd. ed, Elsevier, Amsterdam, 2004 | Zbl

[15] V. E. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053–7066 | DOI | MR | Zbl

[16] O. F. Syljuasen, M. B. Zvonarev, “Monte-Carlo simulations of vertex models”, Phys. Rev. E, 70 (2004), 016118 | DOI

[17] D. Allison, N. Reshetikhin, “Numerical study of the $6$-vertex model with domain wall boundary conditions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1847–1869 | DOI | MR | Zbl

[18] V. S. Kapitonov, A. G. Pronko, “Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse”, Zap. Nauchn. Semin. POMI, 494, 2020, 168–218

[19] P. Belov, N. Reshetikhin, The two-point correlation function in the six-vertex model, 2012, arXiv: 2012.05182