Zero modes of the Laplace operator in two-loop calculations in the Yang–Mills theory
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 216-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study two-loop calculations in the Yang–Mills theory. Using the heat kernel method we construct two Green functions and add contributions to them, corresponding to the zero modes of the Laplace operator. We show by the direct calculations that such additions do not affect the second coefficient of the $\beta$-function in the Yang–Mills theory.
@article{ZNSL_2021_509_a13,
     author = {N. V. Kharuk},
     title = {Zero modes of the {Laplace} operator in two-loop calculations in the {Yang{\textendash}Mills} theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {216--226},
     year = {2021},
     volume = {509},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a13/}
}
TY  - JOUR
AU  - N. V. Kharuk
TI  - Zero modes of the Laplace operator in two-loop calculations in the Yang–Mills theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 216
EP  - 226
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a13/
LA  - ru
ID  - ZNSL_2021_509_a13
ER  - 
%0 Journal Article
%A N. V. Kharuk
%T Zero modes of the Laplace operator in two-loop calculations in the Yang–Mills theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 216-226
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a13/
%G ru
%F ZNSL_2021_509_a13
N. V. Kharuk. Zero modes of the Laplace operator in two-loop calculations in the Yang–Mills theory. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 216-226. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a13/

[1] V. Fock, “Die Eigenzeit in der Klassischen- und in der Quanten- mechanik”, Sow. Phys., 12 (1937), 404–425

[2] J. C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge University Press, 1984 | Zbl

[3] M. Kurkov, D. Vassilevich, “Parity anomaly in four dimensions”, Phys. Rev. D, 96:2 (2017), 025011 | DOI | MR

[4] A. V. Ivanov, D. V. Vassilevich, “Atiyah–Patodi–Singer index theorem for domain walls”, J. Phys. A: Math. Theor., 53 (2020), 305201 | DOI

[5] L. D. Faddeev, A. A. Slavnov, Gauge Fields: An Introduction to Quantum Theory, Frontiers in Physics, 83, Addison–Wesley, 1991

[6] G. 't Hooft, “The background field method in gauge field theories”, Proceedings (Karpacz, 1975), v. 1, Acta Universitatis Wratislaviensis, Wroclaw, 1976, 345–369

[7] I. Ya. Aref'eva, A. A. Slavnov, L. D. Faddeev, “Generating functional for the S-matrix in gauge-invariant theories”, TMF, 21:3 (1974), 311–321

[8] A. V. Ivanov, N. V. Kharuk, “Two-loop cutoff renormalization of 4-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 48 (2020), 015002 | DOI

[9] M. Luscher, “Dimensional regularisation in the presence of large background fields”, Annals of Physics, 142 (1982), 359–392 | DOI | MR

[10] A. V. Ivanov, N. V. Kharuk, Two Function Families and Their Application to Hankel Transform of Heat Kernel, arXiv: 2106.00294 [math-ph]

[11] A. V. Ivanov, “Diagram Technique for the Heat Kernel of the Covariant Laplace Operator”, Theor. Math. Phys., 198:1 (2019), 100–117 | DOI | Zbl

[12] P.B. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10 (1975), 601–618 | DOI | Zbl

[13] A. V. Ivanov, N. V. Kharuk, “Heat kernel: proper time method, Fock–Schwinger gauge, path integral representation, and Wilson line”, Theoret. and Math. Phys., 205:2 (2020), 1456–1472 | DOI | Zbl