@article{ZNSL_2021_509_a13,
author = {N. V. Kharuk},
title = {Zero modes of the {Laplace} operator in two-loop calculations in the {Yang{\textendash}Mills} theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {216--226},
year = {2021},
volume = {509},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a13/}
}
N. V. Kharuk. Zero modes of the Laplace operator in two-loop calculations in the Yang–Mills theory. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 216-226. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a13/
[1] V. Fock, “Die Eigenzeit in der Klassischen- und in der Quanten- mechanik”, Sow. Phys., 12 (1937), 404–425
[2] J. C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge University Press, 1984 | Zbl
[3] M. Kurkov, D. Vassilevich, “Parity anomaly in four dimensions”, Phys. Rev. D, 96:2 (2017), 025011 | DOI | MR
[4] A. V. Ivanov, D. V. Vassilevich, “Atiyah–Patodi–Singer index theorem for domain walls”, J. Phys. A: Math. Theor., 53 (2020), 305201 | DOI
[5] L. D. Faddeev, A. A. Slavnov, Gauge Fields: An Introduction to Quantum Theory, Frontiers in Physics, 83, Addison–Wesley, 1991
[6] G. 't Hooft, “The background field method in gauge field theories”, Proceedings (Karpacz, 1975), v. 1, Acta Universitatis Wratislaviensis, Wroclaw, 1976, 345–369
[7] I. Ya. Aref'eva, A. A. Slavnov, L. D. Faddeev, “Generating functional for the S-matrix in gauge-invariant theories”, TMF, 21:3 (1974), 311–321
[8] A. V. Ivanov, N. V. Kharuk, “Two-loop cutoff renormalization of 4-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 48 (2020), 015002 | DOI
[9] M. Luscher, “Dimensional regularisation in the presence of large background fields”, Annals of Physics, 142 (1982), 359–392 | DOI | MR
[10] A. V. Ivanov, N. V. Kharuk, Two Function Families and Their Application to Hankel Transform of Heat Kernel, arXiv: 2106.00294 [math-ph]
[11] A. V. Ivanov, “Diagram Technique for the Heat Kernel of the Covariant Laplace Operator”, Theor. Math. Phys., 198:1 (2019), 100–117 | DOI | Zbl
[12] P.B. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10 (1975), 601–618 | DOI | Zbl
[13] A. V. Ivanov, N. V. Kharuk, “Heat kernel: proper time method, Fock–Schwinger gauge, path integral representation, and Wilson line”, Theoret. and Math. Phys., 205:2 (2020), 1456–1472 | DOI | Zbl