Towards counting paths in lattice path models with filter restrictions and long steps
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 201-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we introduce the notion of congruence for regions in lattice path models. This turns out to be useful for deriving path counting formula for the auxiliary lattice path model in the presence of long steps, source and target points of which are situated near the filter restrictions. This problem was motivated by the fact, that weighted numbers of paths in such model mimic multiplicities in tensor power decomposition of $U_q(sl_2)$-module $T(1)^{\otimes N}$ at roots of unity. We expand on combinatorial properties of such model and introduce the punchline of a proof for explicit path counting formula.
@article{ZNSL_2021_509_a12,
     author = {D. P. Solovyev},
     title = {Towards counting paths in lattice path models with filter restrictions and long steps},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {201--215},
     year = {2021},
     volume = {509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a12/}
}
TY  - JOUR
AU  - D. P. Solovyev
TI  - Towards counting paths in lattice path models with filter restrictions and long steps
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 201
EP  - 215
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a12/
LA  - en
ID  - ZNSL_2021_509_a12
ER  - 
%0 Journal Article
%A D. P. Solovyev
%T Towards counting paths in lattice path models with filter restrictions and long steps
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 201-215
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a12/
%G en
%F ZNSL_2021_509_a12
D. P. Solovyev. Towards counting paths in lattice path models with filter restrictions and long steps. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 201-215. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a12/

[1] D. Grabiner, P. Magyar, “Random walks in Weyl chambers and the decomposition of tensor powers”, J. Algebraic Combin., 2:3 (1993), 239–260 | DOI | MR | Zbl

[2] D. Grabiner, “Random walk in an alcove of an affine Weyl group, and non-colliding random walks on an interval”, J. Combin. Theory, Series A, 97:2 (2002), 285–306 | DOI | MR | Zbl

[3] T. Tate, S. Zelditch, “Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers”, J. Funct. Anal., 217:2 (2004), 402–447 | DOI | MR | Zbl

[4] O. Postnova, N. Reshetikhin, On multiplicities of ireducibles in large tensor product of representations of simple Lie algebras, arXiv: 1812.11236

[5] L. Faddeev, N. Reshetikhin, L. Takhtajan, “Quantization of Lie groups and Lie algebras”, Algebraic analysis, 1988, 129–139 | DOI

[6] H. Andersen, “Tensor products of quantized tilting modules”, Comm. Math. Phys., 149 (1992), 149–159 | DOI | MR | Zbl

[7] A. Lachowska, O. Postnova, N. Reshetikhin, D. Solovyev, Tensor powers of vector representation of $U_q(sl_2)$ at even roots of unity, in preparation

[8] O. Postnova, D. Solovyev, Counting filter restricted paths in $\mathbb{Z}^2$ lattice, arXiv: 2107.09774

[9] C. Krattenthaler, Lattice path combinatorics chapter in Handbook of Enumerative combinatorics, ed. Miklos Bona, Chapman and Hall, 2015

[10] P. Littelmann, “Paths and root operators in representation theory”, Annals Math., 142:3 (1995), 499–525 | DOI | MR | Zbl

[11] O. Bratteli, “Inductive limits of finite dimensional C*-algebras”, Transactions of the American Math. Soc., 171 (1972), 195–234 | MR | Zbl

[12] D. Zeilberger, “The Method of Creative Telescoping”, J. Symb. Comput., 11 (1991), 195–204 | DOI | Zbl

[13] Herbert Wilf, Doron Zeilberger, “Rational Functions Certify Combinatorial Identities”, J. Amer. Math. Soc., 3 (1990), 147–158 | DOI | MR | Zbl

[14] P. Paule, M. Schorn, “A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities”, J. Symb. Comput., 11 (1994), 1–000