@article{ZNSL_2021_509_a12,
author = {D. P. Solovyev},
title = {Towards counting paths in lattice path models with filter restrictions and long steps},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--215},
year = {2021},
volume = {509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a12/}
}
D. P. Solovyev. Towards counting paths in lattice path models with filter restrictions and long steps. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 201-215. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a12/
[1] D. Grabiner, P. Magyar, “Random walks in Weyl chambers and the decomposition of tensor powers”, J. Algebraic Combin., 2:3 (1993), 239–260 | DOI | MR | Zbl
[2] D. Grabiner, “Random walk in an alcove of an affine Weyl group, and non-colliding random walks on an interval”, J. Combin. Theory, Series A, 97:2 (2002), 285–306 | DOI | MR | Zbl
[3] T. Tate, S. Zelditch, “Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers”, J. Funct. Anal., 217:2 (2004), 402–447 | DOI | MR | Zbl
[4] O. Postnova, N. Reshetikhin, On multiplicities of ireducibles in large tensor product of representations of simple Lie algebras, arXiv: 1812.11236
[5] L. Faddeev, N. Reshetikhin, L. Takhtajan, “Quantization of Lie groups and Lie algebras”, Algebraic analysis, 1988, 129–139 | DOI
[6] H. Andersen, “Tensor products of quantized tilting modules”, Comm. Math. Phys., 149 (1992), 149–159 | DOI | MR | Zbl
[7] A. Lachowska, O. Postnova, N. Reshetikhin, D. Solovyev, Tensor powers of vector representation of $U_q(sl_2)$ at even roots of unity, in preparation
[8] O. Postnova, D. Solovyev, Counting filter restricted paths in $\mathbb{Z}^2$ lattice, arXiv: 2107.09774
[9] C. Krattenthaler, Lattice path combinatorics chapter in Handbook of Enumerative combinatorics, ed. Miklos Bona, Chapman and Hall, 2015
[10] P. Littelmann, “Paths and root operators in representation theory”, Annals Math., 142:3 (1995), 499–525 | DOI | MR | Zbl
[11] O. Bratteli, “Inductive limits of finite dimensional C*-algebras”, Transactions of the American Math. Soc., 171 (1972), 195–234 | MR | Zbl
[12] D. Zeilberger, “The Method of Creative Telescoping”, J. Symb. Comput., 11 (1991), 195–204 | DOI | Zbl
[13] Herbert Wilf, Doron Zeilberger, “Rational Functions Certify Combinatorial Identities”, J. Amer. Math. Soc., 3 (1990), 147–158 | DOI | MR | Zbl
[14] P. Paule, M. Schorn, “A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities”, J. Symb. Comput., 11 (1994), 1–000