@article{ZNSL_2021_509_a10,
author = {A. N. Manashov},
title = {Mellin{\textendash}Barnes integrals related to the {Lie} algebra $u(N)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {176--184},
year = {2021},
volume = {509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/}
}
A. N. Manashov. Mellin–Barnes integrals related to the Lie algebra $u(N)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 176-184. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/
[1] R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23:2 (1992), 525–551 | DOI | MR | Zbl
[2] R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341:1 (1994), 69–119 | MR | Zbl
[3] S. C. Milne, “A $q$-analog of the Gauss summation theorem for hypergeometric series in $U(n)$”, Adv. in Math., 72:1 (1988), 59–131 | DOI | MR | Zbl
[4] V. P. Spiridonov, “Essays on the theory of elliptic hypergeometric functions”, Uspekhi Mat. Nauk, 63:3 (2008), 3–72 | DOI | MR | Zbl
[5] V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207:1 (2006), 91–132 | DOI | MR | Zbl
[6] E. M. Rains, “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (2), 171:1 (2010), 169–243 | DOI | MR | Zbl
[7] I. M. Gel'fand, M. I. Graev, V. S. Retakh, “Hypergeometric functions over an arbitrary field”, Uspekhi Mat. Nauk, 59:5 (2004), 29–100 | DOI | MR | Zbl
[8] S. E. Derkachov, A. N. Manashov, “On complex gamma-function integrals”, SIGMA Symmetry Integrability Geom. Methods Appl., 16 (2020), 003, 20 pp. | Zbl
[9] R. A. Gustafson, “Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$”, SIAM J. Math. Anal., 18:6 (1987), 1576–1596 | DOI | MR | Zbl
[10] J. V. Stokman, “On BC type basic hypergeometric orthogonal polynomials”, Trans. Amer. Math. Soc., 352:4 (2000), 1527–1579 | DOI | MR | Zbl
[11] P. J. Forrester, S. O. Warnaar, “The importance of the Selberg integral”, Bull. Amer. Math. Soc. (N.S.), 45:4 (2008), 489–534 | DOI | MR | Zbl