Mellin--Barnes integrals related to the Lie algebra $u(N)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 176-184

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an alternative proof of Gustafson's generalization of the second Barnes' lemma.
@article{ZNSL_2021_509_a10,
     author = {A. N. Manashov},
     title = {Mellin--Barnes integrals related to the {Lie} algebra $u(N)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--184},
     publisher = {mathdoc},
     volume = {509},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/}
}
TY  - JOUR
AU  - A. N. Manashov
TI  - Mellin--Barnes integrals related to the Lie algebra $u(N)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 176
EP  - 184
VL  - 509
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/
LA  - en
ID  - ZNSL_2021_509_a10
ER  - 
%0 Journal Article
%A A. N. Manashov
%T Mellin--Barnes integrals related to the Lie algebra $u(N)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 176-184
%V 509
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/
%G en
%F ZNSL_2021_509_a10
A. N. Manashov. Mellin--Barnes integrals related to the Lie algebra $u(N)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 176-184. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/