Mellin–Barnes integrals related to the Lie algebra $u(N)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 176-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present an alternative proof of Gustafson's generalization of the second Barnes' lemma.
@article{ZNSL_2021_509_a10,
     author = {A. N. Manashov},
     title = {Mellin{\textendash}Barnes integrals related to the {Lie} algebra $u(N)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--184},
     year = {2021},
     volume = {509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/}
}
TY  - JOUR
AU  - A. N. Manashov
TI  - Mellin–Barnes integrals related to the Lie algebra $u(N)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 176
EP  - 184
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/
LA  - en
ID  - ZNSL_2021_509_a10
ER  - 
%0 Journal Article
%A A. N. Manashov
%T Mellin–Barnes integrals related to the Lie algebra $u(N)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 176-184
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/
%G en
%F ZNSL_2021_509_a10
A. N. Manashov. Mellin–Barnes integrals related to the Lie algebra $u(N)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 176-184. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a10/

[1] R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23:2 (1992), 525–551 | DOI | MR | Zbl

[2] R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341:1 (1994), 69–119 | MR | Zbl

[3] S. C. Milne, “A $q$-analog of the Gauss summation theorem for hypergeometric series in $U(n)$”, Adv. in Math., 72:1 (1988), 59–131 | DOI | MR | Zbl

[4] V. P. Spiridonov, “Essays on the theory of elliptic hypergeometric functions”, Uspekhi Mat. Nauk, 63:3 (2008), 3–72 | DOI | MR | Zbl

[5] V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207:1 (2006), 91–132 | DOI | MR | Zbl

[6] E. M. Rains, “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (2), 171:1 (2010), 169–243 | DOI | MR | Zbl

[7] I. M. Gel'fand, M. I. Graev, V. S. Retakh, “Hypergeometric functions over an arbitrary field”, Uspekhi Mat. Nauk, 59:5 (2004), 29–100 | DOI | MR | Zbl

[8] S. E. Derkachov, A. N. Manashov, “On complex gamma-function integrals”, SIGMA Symmetry Integrability Geom. Methods Appl., 16 (2020), 003, 20 pp. | Zbl

[9] R. A. Gustafson, “Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$”, SIAM J. Math. Anal., 18:6 (1987), 1576–1596 | DOI | MR | Zbl

[10] J. V. Stokman, “On BC type basic hypergeometric orthogonal polynomials”, Trans. Amer. Math. Soc., 352:4 (2000), 1527–1579 | DOI | MR | Zbl

[11] P. J. Forrester, S. O. Warnaar, “The importance of the Selberg integral”, Bull. Amer. Math. Soc. (N.S.), 45:4 (2008), 489–534 | DOI | MR | Zbl