A general vector field coupled to a strongly compressible turbulent flow
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 5-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the model of a transverse vector (e.g. magnetic) field with the most general form of the nonlinearity, known as the $\mathcal{A}$ model, passively advected by a strongly compressible turbulent flow, governed by the randomly stirred Navier-Stokes equation. The full stochastic problem is equivalent to a certain renormalizable field theoretic model with an infrared- attractive fixed point. Thus, the scaling behaviour for the large-scale, long-distance behaviour is established. However, the question whether the parameter $\mathcal{A}$ tends to a certain fixed-point value of the renormalization group equations or remains arbitrary, cannot be answered within the one-loop approximation of our study.
@article{ZNSL_2021_509_a0,
     author = {N. V. Antonov and M. M. Tumakova},
     title = {A general vector field coupled to a strongly compressible turbulent flow},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--24},
     year = {2021},
     volume = {509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a0/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - M. M. Tumakova
TI  - A general vector field coupled to a strongly compressible turbulent flow
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 5
EP  - 24
VL  - 509
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a0/
LA  - en
ID  - ZNSL_2021_509_a0
ER  - 
%0 Journal Article
%A N. V. Antonov
%A M. M. Tumakova
%T A general vector field coupled to a strongly compressible turbulent flow
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 5-24
%V 509
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a0/
%G en
%F ZNSL_2021_509_a0
N. V. Antonov; M. M. Tumakova. A general vector field coupled to a strongly compressible turbulent flow. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a0/

[1] U. Frisch, Turbulence: The Legacy of ANK olmogorov, Cambridge University Press, Cambridge, 1995

[2] G. Falkovich, K. Gawedzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev. Mod. Phys., 73 (2001), 913 | DOI | Zbl

[3] A. N. Vasiliev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman Hall/CRC, Boca Raton (Florida, US), 2004 | Zbl

[4] R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, “On the multifractal nature of fully developed turbulence and chaotic systems”, J. Phys. A: Math. Gen., 17 (1984), 3521–3531 | DOI | MR

[5] U. Frisch, G. Parisi, “Fully Developed Turbulence and Intermittency”, Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, eds. M. Ghil, R. Benzi, G. Parisi, North-Holland publishing Co, NY, 1985, 84–88

[6] R. Benzi, L. Biferale, G. Paladin, A. Vulpiani, M. Vergassola, “Multifractality in the statistics of the velocity gradients in turbulence”, Phys. Rev. Lett., 67 (1991), 2299 | DOI

[7] “Giorgio Parisi – Facts – 2021”, Nobel Prize Outreach AB 2021, NobelPrize.org, 2021 https://www.nobelprize.org/prizes/physics/2021/parisi/facts/

[8] R. H. Kraichnan, “Anomalous scaling of a randomly advected passive scalar”, Phys. Rev. Lett., 72 (1994), 1016 | DOI

[9] K. Gawedzki, A. Kupiainen, “Anomalous Scaling of the Passive Scalar,”, Phys. Rev. Lett., 75 (1995), 3834 | DOI

[10] M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, “Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar”, Phys. Rev. E, 52 (1995), 4924 | DOI | MR

[11] D. Bernard, K. Gawedzki, A. Kupiainen, “Anomalous scaling in the N-point functions of a passive scalar”, Phys. Rev. E, 54 (1996), 2564 | DOI | MR

[12] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar”, Phys. Rev. E, 58 (1998), 1823 | DOI | MR

[13] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion”, Theor. Math. Phys., 120 (1999), 1074 | DOI | MR | Zbl

[14] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, “Anomalous exponents in the rapid-change model of the passive scalar advection in the order $\varepsilon^3$”, Phys. Rev. E, 63 (2001), 025303(R) | DOI

[15] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, “Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order $\varepsilon^3$”, Phys. Rev. E, 64 (2001), 056306 | DOI

[16] N. V. Antonov, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection”, J. Phys. A: Math. Gen., 39 (2006), 7825–7865 | DOI | Zbl

[17] “Quantum field renormalization group in the theory of fully developed turbulence”, Phys.-Usp., 39 (1996), 1193 | DOI | DOI

[18] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasiliev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London, 1999 | Zbl

[19] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Infrared divergences and the renormalization group in the theory of fully developed turbulence”, Sov. Phys. JETP, 68 (1989), 733–742

[20] N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field”, Phys. Rev. E, 60 (1999), 6691 | DOI | MR | Zbl

[21] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, “Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation”, Phys. Rev. E, 66 (2002), 036313 | DOI

[22] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, T. L. Kim, “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two-loop approximation”, Phys. Rev. E, 71 (2005), 016303 | DOI | MR

[23] N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow”, Physica D, 144 (2000), 370 | DOI | MR | Zbl

[24] L. Ts. Adzhemyan, N. V. Antonov, “Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow”, Phys. Rev. E, 58 (1998), 7381 | DOI | MR

[25] M. Vergassola, “Anomalous scaling for passively advected magnetic fields”, Phys. Rev. E, 53 (1996), R3021 | DOI

[26] I. Rogachevskii, N. Kleeorin, “Intermittency and anomalous scaling for magnetic fluctuations”, Phys. Rev. E, 56 (1997), 417 | DOI

[27] L. Ts. Adzhemyan, N. V. Antonov, A. Mazzino, P. Muratore Ginanneschi, A. V. Runov, “Pressure and intermittency in passive vector turbulence”, Europhys. Lett., 55 (2001), 801 | DOI

[28] N. V. Antonov, M. Hnatich, J. Honkonen, M. Jurcisin, “Turbulence with pressure: Anomalous scaling of a passive vector field”, Phys. Rev. E, 68 (2003), 046306 | DOI

[29] H. Arponen, “Anomalous scaling and anisotropy in models of passively advected vector fields”, Phys. Rev. E, 79 (2009), 056303 | DOI | MR

[30] N. V. Antonov, N. M. Gulitskiy, “Anomalous scaling in statistical models of passively advected vector fields”, Theor. Math. Phys., 176 (2013), 851–860 | DOI | Zbl

[31] A. Lanotte, A. Mazzino, “Anisotropic nonperturbative zero modes for passively advected magnetic fields”, Phys. Rev. E, 60 (1999), R3483 | DOI

[32] N. V. Antonov, A. Lanotte, A. Mazzino, “Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence”, Phys. Rev. E, 61 (2000), 6586 | DOI

[33] N. V. Antonov, J. Honkonen, A. Mazzino, P. Muratore Ginanneschi, “Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical scaling exponents”, Phys. Rev. E, 62 (2000), R5891 | DOI

[34] I. Arad, L. Biferale, I. Procaccia, “Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors of passively advected magnetic fields”, Phys. Rev. E, 61 (2000), 2654 | DOI

[35] N.V. Antonov, N.M. Gulitskiy, “Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: Two-loop renormalization-group analysis of the Kazantsev–Kraichnan kinematic model”, Phys. Rev. E, 85 (2012), 065301(R) | DOI

[36] A. V. Runov, On the Field Theoretical Approach to the Anomalous Scaling in Turbulence, Report SPbU-IP-99-08, St. Petersburg State University, 1999, arXiv: chao-dyn/9906026

[37] L. Ts. Adzhemyan, N. V. Antonov, A. V. Runov, “Anomalous scaling, nonlocality, and anisotropy in a model of the passively advected vector field”, Phys. Rev. E, 64 (2001), 046310 | DOI

[38] I. Arad, I. Procaccia, “Spectrum of anisotropic exponents in hydrodynamic systems with pressure”, Phys. Rev. E, 63 (2001), 056302 | DOI

[39] L. Ts. Adzhemyan, A. V. Runov, “Structure functions in a model of passive turbulent transfer of a vector field”, Vestnik St. Petersburg Univ., Ser. Phys. Chem. 1, 2001, no. 4, 85

[40] L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets, “Anomalous scaling of a passive vector field in $d$ dimensions: Higher-order structure functions”, J. Phys. A, Math. Theor., 46 (2013), 135002 | DOI | Zbl

[41] L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets, “Anomalous scaling in a model of a passive turbulece transfer of a vector field: Higher-order structure functions”, Vestnik St. Petersburg Univ., Ser. Phys. Chem. 1, 2009 | Zbl

[42] L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets, “Anomalous scaling of a passive vector field in $d$ dimensions: Higher-order structure functions”, J. Phys. A, Math. Theor., 46 (2013), 135002 | DOI | Zbl

[43] I. Staroselsky, V. Yakhot, S. Kida, S. A. Orszag, “Long-time, large-scale properties of a randomly stirred compressible fluid”, Phys. Rev. Lett., 65 (1990), 171 | DOI

[44] N. V. Antonov, M. Yu. Nalimov, A. A. Udalov, “Renormalization group in the problem of the fully developed turbulence of a compressible fluid”, Theor. Math. Phys., 110 (1997), 305 | DOI | Zbl

[45] N. V. Antonov, M. M. Kostenko, “Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: Effects of strong compressibility and large-scale anisotropy”, Phys. Rev. E, 90 (2014), 063016 | DOI

[46] N. V. Antonov, M. M. Kostenko, “Anomalous scaling in magnetohydrodynamic turbulence: Effects of anisotropy and compressibility in the kinematic approximation”, Phys. Rev. E, 92 (2015), 053013 | DOI | MR

[47] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Stochastic Navier-Stokes equation and advection of a tracer field: One-loop renormalization near $d=4$”, EPJ Web of Conferences, 164 (2017), 07044 | DOI

[48] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Advection of a passive scalar field by turbulent compressible fluid: renormalization group analysis near $d=4$”, EPJ Web of Conferences, 137 (2017), 1000 | DOI

[49] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Renormalization group analysis of a turbulent compressible fluid near $d=4$: Crossover between local and non-local scaling regimes”, EPJ Web of Conferences, 125 (2016), 05006 | DOI

[50] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Turbulent compressible fluid: renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields”, Phys. Rev. E, 95 (2017), 033120 | DOI

[51] L.D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd English edition, Pergamon Press, Oxford, 1987 | Zbl

[52] J. Honkonen, “Comment on “Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields””, Phys. Rev. E, 104 (2021), 027101 | DOI

[53] M. Hnatič, N.M. Gulitskiy, T. Lučivjanský, L. Mižišin, V. Škultéty, Stochastic Navier-Stokes equation for a compressible fluid: two-loop approximation, 2018, arXiv: 1810.03462