@article{ZNSL_2021_509_a0,
author = {N. V. Antonov and M. M. Tumakova},
title = {A general vector field coupled to a strongly compressible turbulent flow},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--24},
year = {2021},
volume = {509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a0/}
}
N. V. Antonov; M. M. Tumakova. A general vector field coupled to a strongly compressible turbulent flow. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 28, Tome 509 (2021), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2021_509_a0/
[1] U. Frisch, Turbulence: The Legacy of ANK olmogorov, Cambridge University Press, Cambridge, 1995
[2] G. Falkovich, K. Gawedzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev. Mod. Phys., 73 (2001), 913 | DOI | Zbl
[3] A. N. Vasiliev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman Hall/CRC, Boca Raton (Florida, US), 2004 | Zbl
[4] R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, “On the multifractal nature of fully developed turbulence and chaotic systems”, J. Phys. A: Math. Gen., 17 (1984), 3521–3531 | DOI | MR
[5] U. Frisch, G. Parisi, “Fully Developed Turbulence and Intermittency”, Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, eds. M. Ghil, R. Benzi, G. Parisi, North-Holland publishing Co, NY, 1985, 84–88
[6] R. Benzi, L. Biferale, G. Paladin, A. Vulpiani, M. Vergassola, “Multifractality in the statistics of the velocity gradients in turbulence”, Phys. Rev. Lett., 67 (1991), 2299 | DOI
[7] “Giorgio Parisi – Facts – 2021”, Nobel Prize Outreach AB 2021, NobelPrize.org, 2021 https://www.nobelprize.org/prizes/physics/2021/parisi/facts/
[8] R. H. Kraichnan, “Anomalous scaling of a randomly advected passive scalar”, Phys. Rev. Lett., 72 (1994), 1016 | DOI
[9] K. Gawedzki, A. Kupiainen, “Anomalous Scaling of the Passive Scalar,”, Phys. Rev. Lett., 75 (1995), 3834 | DOI
[10] M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, “Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar”, Phys. Rev. E, 52 (1995), 4924 | DOI | MR
[11] D. Bernard, K. Gawedzki, A. Kupiainen, “Anomalous scaling in the N-point functions of a passive scalar”, Phys. Rev. E, 54 (1996), 2564 | DOI | MR
[12] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar”, Phys. Rev. E, 58 (1998), 1823 | DOI | MR
[13] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion”, Theor. Math. Phys., 120 (1999), 1074 | DOI | MR | Zbl
[14] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, “Anomalous exponents in the rapid-change model of the passive scalar advection in the order $\varepsilon^3$”, Phys. Rev. E, 63 (2001), 025303(R) | DOI
[15] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, “Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order $\varepsilon^3$”, Phys. Rev. E, 64 (2001), 056306 | DOI
[16] N. V. Antonov, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection”, J. Phys. A: Math. Gen., 39 (2006), 7825–7865 | DOI | Zbl
[17] “Quantum field renormalization group in the theory of fully developed turbulence”, Phys.-Usp., 39 (1996), 1193 | DOI | DOI
[18] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasiliev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London, 1999 | Zbl
[19] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Infrared divergences and the renormalization group in the theory of fully developed turbulence”, Sov. Phys. JETP, 68 (1989), 733–742
[20] N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field”, Phys. Rev. E, 60 (1999), 6691 | DOI | MR | Zbl
[21] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, “Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation”, Phys. Rev. E, 66 (2002), 036313 | DOI
[22] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, T. L. Kim, “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two-loop approximation”, Phys. Rev. E, 71 (2005), 016303 | DOI | MR
[23] N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow”, Physica D, 144 (2000), 370 | DOI | MR | Zbl
[24] L. Ts. Adzhemyan, N. V. Antonov, “Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow”, Phys. Rev. E, 58 (1998), 7381 | DOI | MR
[25] M. Vergassola, “Anomalous scaling for passively advected magnetic fields”, Phys. Rev. E, 53 (1996), R3021 | DOI
[26] I. Rogachevskii, N. Kleeorin, “Intermittency and anomalous scaling for magnetic fluctuations”, Phys. Rev. E, 56 (1997), 417 | DOI
[27] L. Ts. Adzhemyan, N. V. Antonov, A. Mazzino, P. Muratore Ginanneschi, A. V. Runov, “Pressure and intermittency in passive vector turbulence”, Europhys. Lett., 55 (2001), 801 | DOI
[28] N. V. Antonov, M. Hnatich, J. Honkonen, M. Jurcisin, “Turbulence with pressure: Anomalous scaling of a passive vector field”, Phys. Rev. E, 68 (2003), 046306 | DOI
[29] H. Arponen, “Anomalous scaling and anisotropy in models of passively advected vector fields”, Phys. Rev. E, 79 (2009), 056303 | DOI | MR
[30] N. V. Antonov, N. M. Gulitskiy, “Anomalous scaling in statistical models of passively advected vector fields”, Theor. Math. Phys., 176 (2013), 851–860 | DOI | Zbl
[31] A. Lanotte, A. Mazzino, “Anisotropic nonperturbative zero modes for passively advected magnetic fields”, Phys. Rev. E, 60 (1999), R3483 | DOI
[32] N. V. Antonov, A. Lanotte, A. Mazzino, “Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence”, Phys. Rev. E, 61 (2000), 6586 | DOI
[33] N. V. Antonov, J. Honkonen, A. Mazzino, P. Muratore Ginanneschi, “Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical scaling exponents”, Phys. Rev. E, 62 (2000), R5891 | DOI
[34] I. Arad, L. Biferale, I. Procaccia, “Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors of passively advected magnetic fields”, Phys. Rev. E, 61 (2000), 2654 | DOI
[35] N.V. Antonov, N.M. Gulitskiy, “Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: Two-loop renormalization-group analysis of the Kazantsev–Kraichnan kinematic model”, Phys. Rev. E, 85 (2012), 065301(R) | DOI
[36] A. V. Runov, On the Field Theoretical Approach to the Anomalous Scaling in Turbulence, Report SPbU-IP-99-08, St. Petersburg State University, 1999, arXiv: chao-dyn/9906026
[37] L. Ts. Adzhemyan, N. V. Antonov, A. V. Runov, “Anomalous scaling, nonlocality, and anisotropy in a model of the passively advected vector field”, Phys. Rev. E, 64 (2001), 046310 | DOI
[38] I. Arad, I. Procaccia, “Spectrum of anisotropic exponents in hydrodynamic systems with pressure”, Phys. Rev. E, 63 (2001), 056302 | DOI
[39] L. Ts. Adzhemyan, A. V. Runov, “Structure functions in a model of passive turbulent transfer of a vector field”, Vestnik St. Petersburg Univ., Ser. Phys. Chem. 1, 2001, no. 4, 85
[40] L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets, “Anomalous scaling of a passive vector field in $d$ dimensions: Higher-order structure functions”, J. Phys. A, Math. Theor., 46 (2013), 135002 | DOI | Zbl
[41] L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets, “Anomalous scaling in a model of a passive turbulece transfer of a vector field: Higher-order structure functions”, Vestnik St. Petersburg Univ., Ser. Phys. Chem. 1, 2009 | Zbl
[42] L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets, “Anomalous scaling of a passive vector field in $d$ dimensions: Higher-order structure functions”, J. Phys. A, Math. Theor., 46 (2013), 135002 | DOI | Zbl
[43] I. Staroselsky, V. Yakhot, S. Kida, S. A. Orszag, “Long-time, large-scale properties of a randomly stirred compressible fluid”, Phys. Rev. Lett., 65 (1990), 171 | DOI
[44] N. V. Antonov, M. Yu. Nalimov, A. A. Udalov, “Renormalization group in the problem of the fully developed turbulence of a compressible fluid”, Theor. Math. Phys., 110 (1997), 305 | DOI | Zbl
[45] N. V. Antonov, M. M. Kostenko, “Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: Effects of strong compressibility and large-scale anisotropy”, Phys. Rev. E, 90 (2014), 063016 | DOI
[46] N. V. Antonov, M. M. Kostenko, “Anomalous scaling in magnetohydrodynamic turbulence: Effects of anisotropy and compressibility in the kinematic approximation”, Phys. Rev. E, 92 (2015), 053013 | DOI | MR
[47] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Stochastic Navier-Stokes equation and advection of a tracer field: One-loop renormalization near $d=4$”, EPJ Web of Conferences, 164 (2017), 07044 | DOI
[48] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Advection of a passive scalar field by turbulent compressible fluid: renormalization group analysis near $d=4$”, EPJ Web of Conferences, 137 (2017), 1000 | DOI
[49] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Renormalization group analysis of a turbulent compressible fluid near $d=4$: Crossover between local and non-local scaling regimes”, EPJ Web of Conferences, 125 (2016), 05006 | DOI
[50] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, T. Lučivjanský, “Turbulent compressible fluid: renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields”, Phys. Rev. E, 95 (2017), 033120 | DOI
[51] L.D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd English edition, Pergamon Press, Oxford, 1987 | Zbl
[52] J. Honkonen, “Comment on “Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields””, Phys. Rev. E, 104 (2021), 027101 | DOI
[53] M. Hnatič, N.M. Gulitskiy, T. Lučivjanský, L. Mižišin, V. Škultéty, Stochastic Navier-Stokes equation for a compressible fluid: two-loop approximation, 2018, arXiv: 1810.03462