On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 173-184

Voir la notice de l'article provenant de la source Math-Net.Ru

Equation $-\Delta u+a\partial_zu=0$ is considered in a domain in $n$-dimensional space. The coefficient in a minor term does not depend on the direction of differentiation in this term. For $a\in L_p$ with $p>\frac{n-1}2$ it is proven that a solution $u$ is locally bounded. If $p=\frac{n-1}2$ then a solution can be unbounded.
@article{ZNSL_2021_508_a7,
     author = {N. D. Filonov and P. A. Hodunov},
     title = {On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {508},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/}
}
TY  - JOUR
AU  - N. D. Filonov
AU  - P. A. Hodunov
TI  - On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 173
EP  - 184
VL  - 508
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/
LA  - ru
ID  - ZNSL_2021_508_a7
ER  - 
%0 Journal Article
%A N. D. Filonov
%A P. A. Hodunov
%T On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 173-184
%V 508
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/
%G ru
%F ZNSL_2021_508_a7
N. D. Filonov; P. A. Hodunov. On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 173-184. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/