On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 173-184
Voir la notice de l'article provenant de la source Math-Net.Ru
Equation $-\Delta u+a\partial_zu=0$ is considered in a domain in $n$-dimensional space. The coefficient in a minor term does not depend on the direction of differentiation in this term. For $a\in L_p$ with $p>\frac{n-1}2$ it is proven that a solution $u$ is locally bounded. If $p=\frac{n-1}2$ then a solution can be unbounded.
@article{ZNSL_2021_508_a7,
author = {N. D. Filonov and P. A. Hodunov},
title = {On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--184},
publisher = {mathdoc},
volume = {508},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/}
}
TY - JOUR AU - N. D. Filonov AU - P. A. Hodunov TI - On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 173 EP - 184 VL - 508 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/ LA - ru ID - ZNSL_2021_508_a7 ER -
N. D. Filonov; P. A. Hodunov. On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 173-184. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/