@article{ZNSL_2021_508_a7,
author = {N. D. Filonov and P. A. Hodunov},
title = {On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--184},
year = {2021},
volume = {508},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/}
}
N. D. Filonov; P. A. Hodunov. On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 173-184. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/
[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996
[2] N. Filonov, “On the regularity of solutions to the equation $-\Delta u + b \cdot \nabla u = 0$”, Zap. Nauch. Sem. POMI, 410, 2013, 168–186 | MR | Zbl
[3] N. Filonov, T. Shilkin, “On some properties of weak solutions to elliptic equations with divergence-free drifts”, Contemporary Math., 710, 2018, 105–120 | DOI | Zbl
[4] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[5] J. Moser, “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13 (1960), 457–468 | DOI | MR | Zbl
[6] A. I. Nazarov, N. N. Uraltseva, “Neravenstvo Garnaka i svyazannye s nim svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii s bezdivergentnymi mladshimi koeffitsientami”, Algebra i analiz, 23:1 (2011), 136–168
[7] G. Seregin, L. Silvestre, V. Šverák, A. Zlatoš, “On divergence-free drifts”, J. Differential Equations, 252:1 (2012), 505–540 | DOI | MR | Zbl
[8] Qi S. Zhang, “A strong regularity result for parabolic equations”, Comm. Math. Phys., 244:2 (2004), 245–260 | DOI | MR | Zbl
[9] V. V. Zhikov, “Zamechaniya o edinstvennosti resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka s mladshimi chlenami”, Funkts. analiz i ego pril., 38:3 (2004), 15–28 | MR | Zbl