On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 173-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Equation $-\Delta u+a\partial_zu=0$ is considered in a domain in $n$-dimensional space. The coefficient in a minor term does not depend on the direction of differentiation in this term. For $a\in L_p$ with $p>\frac{n-1}2$ it is proven that a solution $u$ is locally bounded. If $p=\frac{n-1}2$ then a solution can be unbounded.
@article{ZNSL_2021_508_a7,
     author = {N. D. Filonov and P. A. Hodunov},
     title = {On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--184},
     year = {2021},
     volume = {508},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/}
}
TY  - JOUR
AU  - N. D. Filonov
AU  - P. A. Hodunov
TI  - On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 173
EP  - 184
VL  - 508
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/
LA  - ru
ID  - ZNSL_2021_508_a7
ER  - 
%0 Journal Article
%A N. D. Filonov
%A P. A. Hodunov
%T On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 173-184
%V 508
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/
%G ru
%F ZNSL_2021_508_a7
N. D. Filonov; P. A. Hodunov. On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 173-184. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a7/

[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996

[2] N. Filonov, “On the regularity of solutions to the equation $-\Delta u + b \cdot \nabla u = 0$”, Zap. Nauch. Sem. POMI, 410, 2013, 168–186 | MR | Zbl

[3] N. Filonov, T. Shilkin, “On some properties of weak solutions to elliptic equations with divergence-free drifts”, Contemporary Math., 710, 2018, 105–120 | DOI | Zbl

[4] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[5] J. Moser, “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13 (1960), 457–468 | DOI | MR | Zbl

[6] A. I. Nazarov, N. N. Uraltseva, “Neravenstvo Garnaka i svyazannye s nim svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii s bezdivergentnymi mladshimi koeffitsientami”, Algebra i analiz, 23:1 (2011), 136–168

[7] G. Seregin, L. Silvestre, V. Šverák, A. Zlatoš, “On divergence-free drifts”, J. Differential Equations, 252:1 (2012), 505–540 | DOI | MR | Zbl

[8] Qi S. Zhang, “A strong regularity result for parabolic equations”, Comm. Math. Phys., 244:2 (2004), 245–260 | DOI | MR | Zbl

[9] V. V. Zhikov, “Zamechaniya o edinstvennosti resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka s mladshimi chlenami”, Funkts. analiz i ego pril., 38:3 (2004), 15–28 | MR | Zbl