@article{ZNSL_2021_508_a6,
author = {S. I. Repin},
title = {Error identities for parabolic initial boundary value problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--172},
year = {2021},
volume = {508},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a6/}
}
S. I. Repin. Error identities for parabolic initial boundary value problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 147-172. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a6/
[1] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, New York, 1991 | DOI | Zbl
[2] P. Ciarlet, The finite element method for elliptic problems, North-Holland, 1987
[3] K. Kumar, S. Kyas, J. Nordbotten, S. Repin, “Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem”, Comput. Math. Appl., 91 (2021), 122–149 | DOI | MR | Zbl
[4] Ning Ju, “Numerical analysis of parabolic p-laplacian: approximation of trajectories”, SIAM J. Numer. Anal., 37:6 (2000), 1861–1884 | DOI | MR | Zbl
[5] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 | Zbl
[6] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer, New York, 1985 | Zbl
[7] U. Langer, S. Matculevich, S. Repin, “Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems”, Comput. Math. Appl., 78:8 (2019), 2641–2671 | DOI | MR | Zbl
[8] S. Matculevich, S. Repin, “Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation”, Appl. Math. Comput., 247 (2014), 329–347 | MR | Zbl
[9] S. V. Matculevich, S. I. Repin, “Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincare inequalities for traces of functions on the boundary”, Differ. Equ., 52:10 (2016), 1355–1365 | DOI | MR | Zbl
[10] S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, Oxford, 1964 | Zbl
[11] W. Prager, J. L. Synge, “Approximations in elasticity based on the concept of functions space”, Quart. Appl. Math., 5 (1947), 241–269 | DOI | MR | Zbl
[12] A. Quarteroni, A. Vali, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999
[13] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | Zbl
[14] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69(230) (2000), 481–500 | DOI | Zbl
[15] S. Repin, “Two-sided estimates of deviations from exact solutions of uniformly elliptic equations”, Trudi St. Petersburg Mathematickal Society, 9 (2001), 148–179 | Zbl
[16] S. Repin, “Estimates of deviations from exact solutions initial-boundary value problem for the heat equation”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR | Zbl
[17] S. Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter GmbH Co. KG, Berlin, 2008
[18] S. I. Repin, S. A. Sauter, Accuracy of Mathematical Models. Dimension Reduction, Homogenization, and Simplification, EMS Tracts Math. Berlin, 33, European Mathematical Society (EMS), 2020 | Zbl
[19] S. I. Repin, “Tozhdestvo dlya otklonenii ot tochnogo resheniya zadachi $\Lambda^*A\Lambda u +\ell = 0$ i ego sledstviya”, Zhurnal Vychislit. Matematiki i Mat. Fiziki, 61:12 (2021), 22–45
[20] V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 2006
[21] A. Toselli, O. Widlund, Domain decomposition methods–algorithms and theory, Springer Series in Computational Mathematics, 34, Springer, Berlin, 2005 | DOI | Zbl
[22] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques, Wiley, Teubner, New-York, 1996 | Zbl