Error identities for parabolic initial boundary value problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 147-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with error identities for a class of parabolic equations. One side of such an identity is a natural measure of the distance between a function in the corresponding energy class and the exact solution of the problem in question. Another side is either directly computable or serves as a source of fully computable error bounds. Particular forms of the identities can be viewed as analogs of the hypercircle identity well known for elliptic problems. It is shown that identities possess an important consistency property. Therefore, the identities and the corresponding error estimates can be used in quantitative analysis of direct and inverse problems associated with parabolic equations. The first part of the paper deals with linear parabolic equations. A class of nonlinear problems is considered in the second part. In particular, this class includes problems, whose spatial parts are presented by the $\alpha$-Laplacian operator.
@article{ZNSL_2021_508_a6,
     author = {S. I. Repin},
     title = {Error identities for parabolic initial boundary value problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--172},
     year = {2021},
     volume = {508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a6/}
}
TY  - JOUR
AU  - S. I. Repin
TI  - Error identities for parabolic initial boundary value problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 147
EP  - 172
VL  - 508
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a6/
LA  - en
ID  - ZNSL_2021_508_a6
ER  - 
%0 Journal Article
%A S. I. Repin
%T Error identities for parabolic initial boundary value problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 147-172
%V 508
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a6/
%G en
%F ZNSL_2021_508_a6
S. I. Repin. Error identities for parabolic initial boundary value problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 147-172. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a6/

[1] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, New York, 1991 | DOI | Zbl

[2] P. Ciarlet, The finite element method for elliptic problems, North-Holland, 1987

[3] K. Kumar, S. Kyas, J. Nordbotten, S. Repin, “Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem”, Comput. Math. Appl., 91 (2021), 122–149 | DOI | MR | Zbl

[4] Ning Ju, “Numerical analysis of parabolic p-laplacian: approximation of trajectories”, SIAM J. Numer. Anal., 37:6 (2000), 1861–1884 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 | Zbl

[6] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer, New York, 1985 | Zbl

[7] U. Langer, S. Matculevich, S. Repin, “Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems”, Comput. Math. Appl., 78:8 (2019), 2641–2671 | DOI | MR | Zbl

[8] S. Matculevich, S. Repin, “Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation”, Appl. Math. Comput., 247 (2014), 329–347 | MR | Zbl

[9] S. V. Matculevich, S. I. Repin, “Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincare inequalities for traces of functions on the boundary”, Differ. Equ., 52:10 (2016), 1355–1365 | DOI | MR | Zbl

[10] S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, Oxford, 1964 | Zbl

[11] W. Prager, J. L. Synge, “Approximations in elasticity based on the concept of functions space”, Quart. Appl. Math., 5 (1947), 241–269 | DOI | MR | Zbl

[12] A. Quarteroni, A. Vali, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999

[13] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | Zbl

[14] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69(230) (2000), 481–500 | DOI | Zbl

[15] S. Repin, “Two-sided estimates of deviations from exact solutions of uniformly elliptic equations”, Trudi St. Petersburg Mathematickal Society, 9 (2001), 148–179 | Zbl

[16] S. Repin, “Estimates of deviations from exact solutions initial-boundary value problem for the heat equation”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR | Zbl

[17] S. Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, 4, Walter de Gruyter GmbH Co. KG, Berlin, 2008

[18] S. I. Repin, S. A. Sauter, Accuracy of Mathematical Models. Dimension Reduction, Homogenization, and Simplification, EMS Tracts Math. Berlin, 33, European Mathematical Society (EMS), 2020 | Zbl

[19] S. I. Repin, “Tozhdestvo dlya otklonenii ot tochnogo resheniya zadachi $\Lambda^*A\Lambda u +\ell = 0$ i ego sledstviya”, Zhurnal Vychislit. Matematiki i Mat. Fiziki, 61:12 (2021), 22–45

[20] V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 2006

[21] A. Toselli, O. Widlund, Domain decomposition methods–algorithms and theory, Springer Series in Computational Mathematics, 34, Springer, Berlin, 2005 | DOI | Zbl

[22] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques, Wiley, Teubner, New-York, 1996 | Zbl