@article{ZNSL_2021_508_a5,
author = {V. G. Osmolovskii},
title = {One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--146},
year = {2021},
volume = {508},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/}
}
TY - JOUR AU - V. G. Osmolovskii TI - One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 134 EP - 146 VL - 508 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/ LA - ru ID - ZNSL_2021_508_a5 ER -
V. G. Osmolovskii. One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 134-146. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/
[1] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990
[2] V. G. Osmolovskii, “Boundary value problems with free surfaces in the theory of phase transitions”, Diff. Equations, 53:13 (2017), 1734–1763 | DOI | Zbl
[3] E. Lib, M. Loss, Analiz, Nauchnaya kniga, Novosibirsk, 1998
[4] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Algebra i analiz, 29:5 (2017), 111–178
[5] V. G. Osmolovskii, “One-dimensional phase transitions problem of continuum mechanics with micro-inhomogeneities”, J. Math. Sci., 167:3 (2010), 394–405 | DOI | MR | Zbl
[6] V. G. Osmolovskii, “Ob'emnaya dolya odnoi iz faz v sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy”, Zap. nauchn. semin. POMI, 459, 2017, 66–82