One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 134-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper formulates a one-dimensional variational problem of the theory of phase transitions in the mechanics of continuous media in the presence of temperature fields depending on the spatial variable. Its unique solvability is proved and a number of propeties of its are discussed.
@article{ZNSL_2021_508_a5,
     author = {V. G. Osmolovskii},
     title = {One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--146},
     publisher = {mathdoc},
     volume = {508},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/}
}
TY  - JOUR
AU  - V. G. Osmolovskii
TI  - One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 134
EP  - 146
VL  - 508
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/
LA  - ru
ID  - ZNSL_2021_508_a5
ER  - 
%0 Journal Article
%A V. G. Osmolovskii
%T One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 134-146
%V 508
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/
%G ru
%F ZNSL_2021_508_a5
V. G. Osmolovskii. One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 134-146. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/