One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 134-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper formulates a one-dimensional variational problem of the theory of phase transitions in the mechanics of continuous media in the presence of temperature fields depending on the spatial variable. Its unique solvability is proved and a number of propeties of its are discussed.
@article{ZNSL_2021_508_a5,
     author = {V. G. Osmolovskii},
     title = {One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--146},
     year = {2021},
     volume = {508},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/}
}
TY  - JOUR
AU  - V. G. Osmolovskii
TI  - One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 134
EP  - 146
VL  - 508
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/
LA  - ru
ID  - ZNSL_2021_508_a5
ER  - 
%0 Journal Article
%A V. G. Osmolovskii
%T One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 134-146
%V 508
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/
%G ru
%F ZNSL_2021_508_a5
V. G. Osmolovskii. One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 134-146. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a5/

[1] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990

[2] V. G. Osmolovskii, “Boundary value problems with free surfaces in the theory of phase transitions”, Diff. Equations, 53:13 (2017), 1734–1763 | DOI | Zbl

[3] E. Lib, M. Loss, Analiz, Nauchnaya kniga, Novosibirsk, 1998

[4] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Algebra i analiz, 29:5 (2017), 111–178

[5] V. G. Osmolovskii, “One-dimensional phase transitions problem of continuum mechanics with micro-inhomogeneities”, J. Math. Sci., 167:3 (2010), 394–405 | DOI | MR | Zbl

[6] V. G. Osmolovskii, “Ob'emnaya dolya odnoi iz faz v sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy”, Zap. nauchn. semin. POMI, 459, 2017, 66–82