@article{ZNSL_2021_508_a4,
author = {A. I. Nazarov and A. P. Shcheglova},
title = {New classes of solutions to semilinear equations in $\mathbb R^n$ with fractional {Laplacian}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--133},
year = {2021},
volume = {508},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a4/}
}
TY - JOUR AU - A. I. Nazarov AU - A. P. Shcheglova TI - New classes of solutions to semilinear equations in $\mathbb R^n$ with fractional Laplacian JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 124 EP - 133 VL - 508 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a4/ LA - ru ID - ZNSL_2021_508_a4 ER -
A. I. Nazarov; A. P. Shcheglova. New classes of solutions to semilinear equations in $\mathbb R^n$ with fractional Laplacian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 124-133. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a4/
[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010
[2] J. F. Bonder, N. Saintier, A. Silva, “The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem”, Nonlin. Diff. Eq. Appl., 25 (2018), 52 | DOI | Zbl
[3] S. Dipierro, G. Palatucci, E. Valdinoci, “Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian”, Matematiche, 68 (2013), 201–216 | Zbl
[4] L. M. Lerman, P. E. Naryshkin, A. I. Nazarov, “Abundance of entire solutions to nonlinear elliptic equations by the variational method”, Nonlin. Analysis, 190 (2020), 111590 | DOI | Zbl
[5] S. Mosconi, K.Perera, M. Squassina, Y. Yang, “The Brezis-Nirenberg problem for the fractional $p$-Laplacian”, Calc. Var. Part. Differ. Eqs., 55:4 (2016), 105 | DOI | Zbl
[6] R. Musina, A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian”, Nonlin. Analysis, 121 (2015), 123–129 | DOI | Zbl
[7] V. G. Osmolovskii, Nelineinaya zadacha Shturma-Liuvillya, Izd-vo SPb. un-ta, SPb., 2003, 230 pp.
[8] G. Palatucci, A. Pisante, “Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces”, Calc. Var. Part. Diff. Eqs., 50:3–4 (2014), 799–829 | DOI | Zbl
[9] P. R. Stinga, J. L. Torrea, “Extension problem and Harnack's inequality for some fractional operators”, Comm. Part. Diff. Eqs., 35:11 (2010), 2092–2122 | DOI | Zbl
[10] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980
[11] N. S. Ustinov, “O postoyanstve ekstremali v teoreme vlozheniya drobnogo poryadka”, Funkts. analiz i ego prilozh., 54:4 (2020), 85–97 | MR | Zbl
[12] N. S. Ustinov, “O razreshimosti polulineinoi zadachi so spektralnym drobnym laplasianom Neimana i kriticheskoi pravoi chastyu”, Algebra i analiz, 33:1 (2021), 194–212 | MR