Stability of the rotation of a two-phase drop with self-gravity
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 89-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A uniformly rotating finite mass consisting of two immiscible viscous incompressible self-gravitating fluids is governed by interface problem for Navier–Stokes system with mass forces in the right-hand side. Surface tension acts on the interface as well as on the exterior free boundary. The proof of stability is based on the analysis of an evolutionary problem for small perturbations of the equilibrium state of a rotating two-phase fluid with self-gravity. It is proved that under sufficient smallness of initial data, exponentially decreasing mass forces and angular velocity, as well as the positivity of the second variation of energy functional, the perturbation of the axisymmetric equilibrium figure exponentially tends to zero as $t\to\infty $, the motion of the drop going over to the rotation of liquid mass as a solid.
@article{ZNSL_2021_508_a3,
     author = {I. V. Denisova and V. A. Solonnikov},
     title = {Stability of the rotation of a two-phase drop with self-gravity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--123},
     year = {2021},
     volume = {508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a3/}
}
TY  - JOUR
AU  - I. V. Denisova
AU  - V. A. Solonnikov
TI  - Stability of the rotation of a two-phase drop with self-gravity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 89
EP  - 123
VL  - 508
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a3/
LA  - en
ID  - ZNSL_2021_508_a3
ER  - 
%0 Journal Article
%A I. V. Denisova
%A V. A. Solonnikov
%T Stability of the rotation of a two-phase drop with self-gravity
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 89-123
%V 508
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a3/
%G en
%F ZNSL_2021_508_a3
I. V. Denisova; V. A. Solonnikov. Stability of the rotation of a two-phase drop with self-gravity. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 89-123. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a3/

[1] A. M. Lyapunov, Ob ustoichivosti ellipsoidalnykh form ravnovesiya vraschayuscheisya zhidkosti, Izdanie AN, 1884

[2] A. Charrueau, “Ètude d'une masse liquide de revolution homogène, sans pesanteur et à tension superficielle, animée d'une rotation uniforme”, Annales de Ècole Normale supérieure, 1927, 129–176

[3] A. Charrueau, “Sur les figures d'équilibre relatif d'une masse liquide en rotation à tension superficielle”, Comptes rendus, 184 (1927), 1418 | Zbl

[4] P. Appell, Figury ravnovesiya vraschayuscheisya odnorodnoi zhidkosti, Glavnaya redaktsiya obschetekhnicheskoi literatury (sokr. ONTI), L.–M., 1936

[5] A. M. Lyapunov, Sobr. sochin., v. 3, Ob ustoichivosti ellipsoidalnykh form ravnovesiya vraschayuscheisya zhidkosti, AN SSSR, M., 1959

[6] K. V. Kholshevnikov, “O teorii Lyapunova figur ravnovesiya nebesnykh tel”, Vestnik SPbGU. Ser. 1, 2007, no. 2, 39–48 | MR | Zbl

[7] V. A. Solonnikov, “Ob ustoichivosti osesimmetricheskikh figur ravnovesiya vraschayuscheisya vyazkoi neszhimaemoi zhidkosti”, Algebra i analiz, 16:2 (2004), 120–153

[8] V. A. Solonnikov, “On problem of stability of equilibrium figures of uniformly rotating viscous incompressible liquid”, Instability in models connected with fluid flows, v. II, Int. Math. Ser., 7, Springer, New York, 2008, 189–254 | DOI | MR

[9] V. A. Solonnikov, “Zadacha o nestatsionarnom dvizhenii dvukh vyazkikh neszhimaemykh zhidkostei”, Prob. mat. analiza, 34 (2006), 103–121

[10] I. V. Denisova, V. A. Solonnikov, $L_2$-theory for two incompressible fluids separated by a free interface, Preprint POMI RAN, 12/2017

[11] I. V. Denisova, V. A. Solonnikov, “$L_2$-theory for two incompressible fluids separated by a free interface”, Topol. Methods Nonlinear Anal., 52 (2018), 213–238 | MR | Zbl

[12] I. V. Denisova, V. A. Solonnikov, Dvizhenie kapli v neszhimaemoi zhidkosti, “Lan”, Sankt-Peterburg, 2020

[13] M. Padula, “On the exponential stability of the rest state of a viscous compressible fluid”, J. Math. Fluid Mech., 1 (1999), 62–77 | DOI | MR | Zbl

[14] I. V. Denisova, V. A. Solonnikov, “Rotation Problem for a Two-Phase Drop”, J. Math. Fluid Mech., 2022 (to appear)

[15] V. Blyashke, Elementarnaya differentsialnaya geometriya, ONTI, M.–L., 1935

[16] E. Dzhusti, Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Per. s angl., “Mir”, M., 1989

[17] V. A. Solonnikov, “Otsenka obobschennoi energii v zadache so svobodnoi granitsei dlya vyazkoi neszhimaemoi zhidkosti”, Zap. nauchn. semin. POMI, 282, 2001, 216–243 | Zbl

[18] M. Padula, V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier–Stokes equations”, Prob. mat. analiza, 50 (2010), 87–112 | Zbl

[19] V. A. Solonnikov, “O lineinoi zadache, voznikayuschei pri issledovanii zadachi so svobodnoi granitsei dlya uravnenii Nave–Stoksa”, Algebra i analiz, 22:6 (2010), 235–269

[20] V. A. Solonnikov, “Razreshimost zadachi ob evolyutsii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu, na konechnom intervale vremeni”, Algebra i analiz, 3:1 (1991), 222–257 | Zbl

[21] I. V. Denisova, “Apriornye otsenki resheniya lineinoi nestatsionarnoi zadachi, svyazannoi s dvizheniem kapli v zhidkoi srede”, Trudy MIAN SSSR, 188, 1990, 3–21 | Zbl

[22] I. V. Denisova, V. A. Solonnikov, “Razreshimost linearizovannoi zadachi o dvizhenii kapli v potoke zhidkosti”, Zap. nauchn. semin. LOMI, 171, 1989, 53–65 | Zbl

[23] V. A. Solonnikov, “Ob odnoi nachalno-kraevoi zadache dlya sistemy Stoksa, voznikayuschie pri issledovanii zadachi so svobodnoi granitsei”, Trudy MIAN SSSR, 188, 1990, 150–188

[24] V. A. Solonnikov, “O nestatsionarnom dvizhenii izolirovannoi massy vyazkoi neszhimaemoi zhidkosti”, Izv. AN SSSR, 51:5 (1987), 1065–1087 | Zbl