Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 73-88
Voir la notice de l'article provenant de la source Math-Net.Ru
Using a variant of Caccioppoli's inequality involving small weights, i.e. weights of the form $(1+|\nabla u|^2)^{-\alpha/2}$ for some $\alpha > 0$, we establish several Liouville-type theorems under general non-standard growth conditions.
@article{ZNSL_2021_508_a2,
author = {M. Bildhauer and M. Fuchs},
title = {Small weights in {Caccioppoli's} inequality and applications to {Liouville-type} theorems for non-standard problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {73--88},
publisher = {mathdoc},
volume = {508},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/}
}
TY - JOUR AU - M. Bildhauer AU - M. Fuchs TI - Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 73 EP - 88 VL - 508 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/ LA - en ID - ZNSL_2021_508_a2 ER -
%0 Journal Article %A M. Bildhauer %A M. Fuchs %T Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 73-88 %V 508 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/ %G en %F ZNSL_2021_508_a2
M. Bildhauer; M. Fuchs. Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 73-88. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/