Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 73-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a variant of Caccioppoli's inequality involving small weights, i.e. weights of the form $(1+|\nabla u|^2)^{-\alpha/2}$ for some $\alpha > 0$, we establish several Liouville-type theorems under general non-standard growth conditions.
@article{ZNSL_2021_508_a2,
     author = {M. Bildhauer and M. Fuchs},
     title = {Small weights in {Caccioppoli's} inequality and applications to {Liouville-type} theorems for non-standard problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--88},
     publisher = {mathdoc},
     volume = {508},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 73
EP  - 88
VL  - 508
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/
LA  - en
ID  - ZNSL_2021_508_a2
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 73-88
%V 508
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/
%G en
%F ZNSL_2021_508_a2
M. Bildhauer; M. Fuchs. Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 73-88. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/