Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 73-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using a variant of Caccioppoli's inequality involving small weights, i.e. weights of the form $(1+|\nabla u|^2)^{-\alpha/2}$ for some $\alpha > 0$, we establish several Liouville-type theorems under general non-standard growth conditions.
@article{ZNSL_2021_508_a2,
     author = {M. Bildhauer and M. Fuchs},
     title = {Small weights in {Caccioppoli's} inequality and applications to {Liouville-type} theorems for non-standard problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--88},
     year = {2021},
     volume = {508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 73
EP  - 88
VL  - 508
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/
LA  - en
ID  - ZNSL_2021_508_a2
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 73-88
%V 508
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/
%G en
%F ZNSL_2021_508_a2
M. Bildhauer; M. Fuchs. Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 73-88. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a2/

[1] A. Farina, “Liouville-type theorems for elliptic problems”, Handbook of differential equations: stationary partial differential equations, v. IV, Elsevier/North-Holland, Amsterdam, 2007, 61–116 | DOI | Zbl

[2] G. Seregin, “Remarks on Liouville type theorems for steady-state Navier-Stokes equations”, Algebra i Analiz, 30:2 (2018), 238–248

[3] L. D'Ambrosio, “Liouville theorems for anisotropic quasilinear inequalities”, Nonlinear Anal., 70:8 (2009), 2855–2869 | DOI | MR

[4] T. Adamowicz, P. Górka, “The Liouville theorems for elliptic equations with nonstandard growth”, Commun. Pure Appl. Anal., 14:6 (2015), 2377–2392 | DOI | MR | Zbl

[5] S. Dudek, “The Liouville-type theorem for problems with nonstandard growth derived by Caccioppoli-type estimate”, Monatsh. Math., 192:1 (2020), 75–91 | DOI | MR | Zbl

[6] M. Bildhauer, M. Fuchs, “Liouville-type results in two dimensions for stationary points of functionals with linear growth”, Ann. Fenn. Math., 2021

[7] M. Bildhauer, M. Fuchs, “Splitting type variational problems with linear growth conditions”, J. Math. Sci. (N.Y.), 250:2 (2020), 45–58 ; Problems in mathematical analysis, 105 | DOI | Zbl

[8] M. Bildhauer, M. Fuchs, “Splitting-type variational problems with mixed linear-superlinear growth conditions”, J. Math. Anal. Appl., 501:1 (2021), 124452, 29 pp. | DOI | Zbl

[9] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer, Berlin, 1990 | Zbl

[10] M. Bildhauer, M. Fuchs, “Partial regularity for variational integrals with (s,$\mu$,q)-growth”, Calc. Var. Partial Diff. Equ., 13:4 (2001), 537–560 | DOI | Zbl

[11] M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions, Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003 | DOI | Zbl