Investigation of the solvability of the first boundary – value problem for the parabolic equation under the nonfulfillment of the compatibility conditions of the initial and boundary data
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 39-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There is studied the first boundary – value problem for the parabolic equation of second order under the nonfulfillment of the compatibility conditions of the initial and boundary data. Existence, uniqueness, estimates of the solution are established. It is proved that the solution of the problem is the sum of the Hölder and singular functions that belong to the weighted Hölder spaces.
@article{ZNSL_2021_508_a1,
     author = {G. I. Bizhanova},
     title = {Investigation of the solvability of the first boundary {\textendash} value problem for the parabolic equation under the nonfulfillment of the compatibility conditions of the initial and boundary data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--72},
     year = {2021},
     volume = {508},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a1/}
}
TY  - JOUR
AU  - G. I. Bizhanova
TI  - Investigation of the solvability of the first boundary – value problem for the parabolic equation under the nonfulfillment of the compatibility conditions of the initial and boundary data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 39
EP  - 72
VL  - 508
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a1/
LA  - ru
ID  - ZNSL_2021_508_a1
ER  - 
%0 Journal Article
%A G. I. Bizhanova
%T Investigation of the solvability of the first boundary – value problem for the parabolic equation under the nonfulfillment of the compatibility conditions of the initial and boundary data
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 39-72
%V 508
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a1/
%G ru
%F ZNSL_2021_508_a1
G. I. Bizhanova. Investigation of the solvability of the first boundary – value problem for the parabolic equation under the nonfulfillment of the compatibility conditions of the initial and boundary data. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 39-72. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a1/

[1] V. S. Belonosov, “Otsenki reshenii parabolicheskikh sistem v vesovykh klassakh Geldera i nekotorye ikh prilozheniya”, Mat. sbornik, 110:2 (1979), 163–188 | MR | Zbl

[2] V. S. Belonosov, T. I. Zelenyak, Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, Novosibirsk, 1975

[3] V. A. Solonnikov, Ob otsenke maksimumov modulei proizvodnykh resheniya odnorodnoi parabolicheskoi nachalno-kraevoi zadachi, Preprint LOMI No. R-2-77, 1977

[4] V. A. Solonnikov, A. G. Khachatryan, “Otsenki reshenii parabolicheskikh nachalno-kraevykh zadach v gelderovskikh normakh”, Tr. MIAN SSSR, 147, 1980, 147–155 | Zbl

[5] G. I. Bizhanova, V. A. Solonnikov, “O razreshimosti nachalno-kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka s proizvodnoi po vremeni v granichnom uslovii v vesovom gelderovskom prostranstve funktsii”, Algebra i analiz, 5:1 (1993), 99–134 | MR

[6] G. I. Bizhanova, V. A. Solonnikov, “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii”, Algebra i analiz, 12:6 (2000), 3–45

[7] G. I. Bizhanova, “Reshenie v vesovom gelderovskom prostranstve funktsii mnogomernykh dvukhfaznykh zadach Ctefana i Florina dlya parabolicheskikh uravnenii vtorogo poryadka v ogranichennoi oblasti”, Algebra i analiz, 7:2 (1995), 46–76 | Zbl

[8] G. Liberman, Second Order Parabolic Differential Equations, World Scientific, 1996

[9] Y. Martel, Ph. Souplet, “Small time boundary behavior of solutions of parabolic equations with noncompatible data”, J. Math. Pures Appl., 79 (2000), 603–632 | DOI | MR | Zbl

[10] G. I. Bizhanova, “Reshenie v prostranstvakh Geldera kraevykh zadach dlya parabolicheskikh uravnenii pri rassoglasovanii nachalnykh i granichnykh dannykh”, Sovremennaya matematika. Fundamentalnye napravleniya, 36, 2010, 12–23 | Zbl

[11] G. I. Bizhanova, “On the classical solvability of boundary value problems for parabolic equations with incompatible initial and boundary data”, Progress in nonlinear differential equations and their applications, 80 (2011), 57–80 | DOI | MR | Zbl

[12] G. I. Bizhanova, “Classical solution of a nonregular sonjunction problem for the heat equations”, Matematicheskii zhurnal, 10:3 (2010), 37–48 | Zbl

[13] G. I. Bizhanova, M.N. Shaimardanova, “Reshenie neregulyarnoi zadachi dlya uravneniya teploprovodnosti s proizvodnoi po vremeni v granichnom uslovii”, Almaty, Matematicheskii zhurnal, 16:1 (2016), 35–57 | MR | Zbl

[14] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[15] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979