Interior and boundary continuity of $p(x)$-harmonic functions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 7-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we establish results on interior and boundary continuity of $p(x)$-harmonic functions with discontinuous exponent $p(x)$.
@article{ZNSL_2021_508_a0,
     author = {Yu. A. Alkhutov and M. D. Surnachev},
     title = {Interior and boundary continuity of $p(x)$-harmonic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--38},
     year = {2021},
     volume = {508},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - M. D. Surnachev
TI  - Interior and boundary continuity of $p(x)$-harmonic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 7
EP  - 38
VL  - 508
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a0/
LA  - ru
ID  - ZNSL_2021_508_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A M. D. Surnachev
%T Interior and boundary continuity of $p(x)$-harmonic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 7-38
%V 508
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a0/
%G ru
%F ZNSL_2021_508_a0
Yu. A. Alkhutov; M. D. Surnachev. Interior and boundary continuity of $p(x)$-harmonic functions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Tome 508 (2021), pp. 7-38. http://geodesic.mathdoc.fr/item/ZNSL_2021_508_a0/

[1] V. V. Zhikov, “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 961–995 | MR

[2] V. V. Zhikov, “Usrednenie nelineinykh funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–711 | MR

[3] V. V. Zhikov, “On Lavrentiev's Phenomenon”, Russian J. Math. Phys., 3:2 (1994), 249–269

[4] V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions”, J. Math. Sci., 173:5 (2011), 463–570 | DOI | MR | Zbl

[5] V. V. Zhikov, O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta, Tamara Rozhkovskaya, Novosibirsk, 2017

[6] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lect. Notes Math., 2017, Springer, Berlin, 2011 | DOI | Zbl

[7] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser–Springer, Basel, 2013 | Zbl

[8] Yu. A. Alkhutov, M. D. Surnachev, “Gelderova nepreryvnost i neravenstvo Kharnaka dlya $p(x)$-garmonicheskikh funktsii”, Tr. MIAN, 308, 2020, 1–21 | Zbl

[9] Yu. A. Alkhutov, O. V. Krasheninnikova, “O nepreryvnosti reshenii ellipticheskikh uravnenii s peremennym poryadkom nelineinosti”, Tr. MIAN, 261, 2008, 7–15 | Zbl

[10] N. S. Trudinger, “On the regularity of generalized solutions of linear, non-unformly elliptic equations”, Arch. Rational Mech. Anal., 42 (1971), 50–62 | DOI | MR | Zbl

[11] Yu. A. Alkhutov, O. V. Krasheninnikova, “Nepreryvnost v granichnykh tochkakh reshenii kvazilineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Izv. RAN. Ser. matem., 68:6 (2004), 3–60 | MR | Zbl

[12] Yu. A. Alkhutov, M. D. Surnachev, “Regulyarnost granichnoi tochki dlya $p(x)$-laplasiana”, Probl. matem. analiza, 92 (2018), 5–25 | Zbl

[13] Yu. A. Alkhutov, M. D. Surnachev, “Povedenie v granichnoi tochke reshenii zadachi Dirikhle dlya $p(x)$-laplasiana”, Algebra i analiz, 31:2 (2019), 88–117