On periodic approximate solutions of dynamical systems with a quadratic right-hand side
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 157-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider difference schemes for dynamical systems $ \dot x = f (x) $ with a quadratic right-hand side that have $t$-symmetry and are reversible. Reversibility is interpreted in the sense that the Cremona transformation is performed at each step of the calculations using a difference scheme. The inheritance of periodicity and the Painlevé property by the approximate solution is investigated. In the computer algebra system Sage, values are found for the step $ \Delta t $ for which the approximate solution is a sequence of points with period $ n \in \mathbb N $. Examples are given, and conjectures about the structure of the sets of initial data generating sequences with period $ n $ are formulated.
@article{ZNSL_2021_507_a8,
     author = {A. Baddour and M. D. Malykh and L. A. Sevastianov},
     title = {On periodic approximate solutions of dynamical systems with a quadratic right-hand side},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--172},
     year = {2021},
     volume = {507},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a8/}
}
TY  - JOUR
AU  - A. Baddour
AU  - M. D. Malykh
AU  - L. A. Sevastianov
TI  - On periodic approximate solutions of dynamical systems with a quadratic right-hand side
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 157
EP  - 172
VL  - 507
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a8/
LA  - ru
ID  - ZNSL_2021_507_a8
ER  - 
%0 Journal Article
%A A. Baddour
%A M. D. Malykh
%A L. A. Sevastianov
%T On periodic approximate solutions of dynamical systems with a quadratic right-hand side
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 157-172
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a8/
%G ru
%F ZNSL_2021_507_a8
A. Baddour; M. D. Malykh; L. A. Sevastianov. On periodic approximate solutions of dynamical systems with a quadratic right-hand side. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 157-172. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a8/

[1] G. J. Cooper, “Stability of Runge–Kutta methods for trajectory problems”, IMA J. Numer. Anal., 7 (1987), 1–13 | DOI | MR | Zbl

[2] Y. B. Suris, “Preservation of symplectic structure in the numerical solution of Hamiltonian systems”, Numerical Solution of Differential Equations, ed. S. S. Filippov, Akad. Nauk. SSSR, Inst. Prikl. Mat., M., 1988, 138–144 (in Russian)

[3] Yu. B. Suris, “Hamiltonian methods of Runge–Kutta type and their variational interpretation”, Math. Model., 2 (1990), 78–87 | Zbl

[4] E. Hairer, G. Wanner, Ch. Lubich, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin–Heidelberg–New York, 2000

[5] D. Greenspan, Completely conservative and covariant numerical methodology for $N$-body problems with distance-dependent potentials, technical report No 285, 1992 http://hdl.handle.net/10106/2267 | Zbl

[6] D. Greenspan, “Completely conservative, covariant numerical methodology”, Comp. Math. Appl., 29:4 (1995), 37–43 | DOI | Zbl

[7] D. Greenspan, “Completely conservative, covariant numerical solution of systems of ordinary differential equations with applications”, Rend. Sem. Mat. Fis. Milano, 65 (1995), 63–87 | DOI | MR

[8] D. Greenspan, Body Problems and Models, World Scientific, 2004 | Zbl

[9] J. C. Simo, O. González, “Assessment of energy-momentum and symplectic schemes for stiff dynamical systems”, ASME Annual Meeting (1993)

[10] E. Graham, G. Jeleni, M. A. Crisfield, “A note on the equivalence of two recent time-integration schemes for $N$-body problems”, Comm. Numer. Methods Engrg., 18 (2002), 615–620 | DOI | MR | Zbl

[11] E. A. Ayryan, M. D. Malykh, L. A. Sevastianov, Yu. Ying, “On periodic approximate solutions of the three-body problem found by conservative difference schemes”, Lect. Notes Comput. Sci., 12291, 2020, 77–90 | DOI | MR

[12] X. Yang, L. Ju, “Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model”, Comput. Methods Appl. Mech. Engrg., 315 (2016), 691–711 | DOI

[13] X. Yang, L. Ju, “Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model”, Comput. Methods Appl. Mech. Engrg., 318 (2017), 1005–1029 | DOI | MR | Zbl

[14] H. Zhang, X. Qian, S. Song, “Novel high-order energy-preserving diagonally implicit Runge–Kutta schemes for nonlinear Hamiltonian ODEs”, Appl. Math. Lett., 102 (2020), 106091 | DOI | MR | Zbl

[15] J. Shen, J. Xu, J. Yang, “The scalar auxiliary variable (SAV) approach for gradient flows”, J. Comput. Phys., 353 (2018), 407–416 | DOI | MR | Zbl

[16] P. Painlevé, Leçons sur la theorie analytique des equations differentielles, {ØE}uvres de Paul Painlevé, 1, 1971

[17] H. Umemura, “Birational automorphism groups and differential equations”, Nagoya Math. J., 119 (1990), 1–80 | DOI | MR | Zbl

[18] M. D. Malykh, “On transcendental functions arising from integrating differential equations in finite terms”, J. Math. Sci., 209 (2015), 935–952 | DOI | MR | Zbl

[19] L. Cremona, “Sulle trasformazioni geometriche delle figure piane”, Opere matematiche di Luigi Cremona, v. 2, U. Hoepli, Milano, 1915, 54–61; 193–218

[20] M. Hénon, “A two-dimensional mapping with a strange attractor”, Comm. Math. Phys., 50 (1976), 69–77 | DOI | MR

[21] M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley, 1989 | Zbl

[22] E. A. Ayryan, M. D. Malykh, L. A. Sevastianov, Yu Ying, “On explicit difference schemes for autonomous systems of differential equations on manifolds”, Lect. Notes Comput. Sci., 11661, 2019, 343–361 | DOI | MR | Zbl

[23] A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, 2001 | Zbl

[24] W. W. Golubev, Lectures on integration of the equations of motion of a rigid body about a fixed point, Jerusalem, 1960 | Zbl

[25] F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, v. 1, Springer, Berlin–Heidelberg, 1979 | Zbl

[26] E. A. Ayryan, M. D. Malykh, L. A. Sevastianov, “On difference schemes approximating first-order differential equations and defining a projective correspondence between layers”, J. Math. Sci., 240 (2019), 634–645 | DOI | MR | Zbl

[27] L. N. Lagutinskii, “K voprosu o prosteishei forme sistemy obyknovennykh differentsialnykh uravnenii”, Mat. sb., 27:4 (1911), 420–423 | Zbl

[28] A. Bychkov, G. Pogudin, Optimal monomial quadratization for ODE systems, 2021, arXiv: 2103.08013

[29] B. Grammaticos, F. W. Nijhoff, A. Ramani, “Discrete Painlevé equations”, The Painlevé Property, One Century Later, Springer, Berlin–Heidelberg, 1999, 413–516 | DOI | Zbl

[30] P. A. Clarkson, E. L. Mansfield, H. N. Webster, “On the relation between the continuous and discrete Painlevé equations”, Theor. Math. Phys., 122 (2000), 1–16 | DOI | Zbl

[31] K. Ishizaki, R. Korhonen, “Meromorphic solutions of algebraic difference equations”, Constr. Approx., 48 (2018), 371–384 | DOI | MR | Zbl

[32] V. P. Gerdt, M. D. Malykh, L. A. Sevastianov, Yu Ying, “On the properties of numerical solutions of dynamical systems obtained using the midpoint method”, Discrete Contin. Models Appl. Comput. Sci., 27:3 (2019), 242–262 | DOI

[33] SageMath, the Sage Mathematics Software System (Version 7.4), , 2016 https://www.sagemath.org

[34] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, Dover, Mineola, 2010 | Zbl