@article{ZNSL_2021_507_a7,
author = {A. L. Chistov},
title = {An effective construction of a small number of equations defining an algebraic variety},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--156},
year = {2021},
volume = {507},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/}
}
A. L. Chistov. An effective construction of a small number of equations defining an algebraic variety. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 140-156. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/
[1] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | MR | Zbl
[2] A. L. Chistov, “An improvement of the complexity bound for solving systems of polynomial equations”, Zap. nauchn. semin. POMI, 390, 2011, 299–306
[3] A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. I”, Zap. nauchn. semin. POMI, 462, 2017, 122–166
[4] A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. II”, Zap. nauchn. seminarov POMI, 468, 2018, 138–176
[5] A. L. Chistov, “Algoritmy polinomialnoi slozhnosti dlya novoi modeli predstavleniya algebraicheskikh mnogoobrazii”, Zap. nauchn. semin. POMI, 378, 2010, 133–170
[6] A. L. Chistov, “Effektivnoe razlozhenie mnogochlenov s parametricheskimi koeffitsientami na absolyutno neprivodimye mnozhiteli”, Zap. nauchn. semin. POMI, 448, 2016, 286–325
[7] G. E. Collins, “Polynomial remainder sequences and determinants”, Amer. Math. Monthly, 73:7 (1966), 708–712 | DOI | MR | Zbl
[8] L. Kronecker, “Grundzüge einer arithmetischen Theorie der algebraischen Grössen”, J. reine angew. Math., 92 (1882), 1–123 | MR
[9] U. Storch, “Bemerkung zu einem Satz von M. Kneser”, Arch. Math., 23 (1972), 403–404 | DOI | Zbl
[10] D. Eisenbud, E. G. Evans, Jr., “Every algebraic set in $n$-space is the intersection of $n$ hypersurfaces”, Inv. Math., 19 (1973), 107–112 | DOI | Zbl
[11] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985 | Zbl