An effective construction of a small number of equations defining an algebraic variety
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 140-156

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a system of polynomial equations in $n$ variables of degrees at most $d$ with the set of all common zeros $V$. We suggest subexponential time algorithms (in the general case and in the case of zero characteristic) for constructing $n+1$ equations of degrees at most $d$ defining the algebraic variety $V$. Further, we construct $n$ equations defining $V$. We give an explicit upper bound on the degrees of these $n$ equations. It is double exponential in $n$. The running time of the algorithm for constructing them is also double exponential in $n$.
@article{ZNSL_2021_507_a7,
     author = {A. L. Chistov},
     title = {An effective construction of a small number of equations defining an algebraic variety},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--156},
     publisher = {mathdoc},
     volume = {507},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - An effective construction of a small number of equations defining an algebraic variety
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 140
EP  - 156
VL  - 507
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/
LA  - ru
ID  - ZNSL_2021_507_a7
ER  - 
%0 Journal Article
%A A. L. Chistov
%T An effective construction of a small number of equations defining an algebraic variety
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 140-156
%V 507
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/
%G ru
%F ZNSL_2021_507_a7
A. L. Chistov. An effective construction of a small number of equations defining an algebraic variety. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 140-156. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/