An effective construction of a small number of equations defining an algebraic variety
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 140-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a system of polynomial equations in $n$ variables of degrees at most $d$ with the set of all common zeros $V$. We suggest subexponential time algorithms (in the general case and in the case of zero characteristic) for constructing $n+1$ equations of degrees at most $d$ defining the algebraic variety $V$. Further, we construct $n$ equations defining $V$. We give an explicit upper bound on the degrees of these $n$ equations. It is double exponential in $n$. The running time of the algorithm for constructing them is also double exponential in $n$.
@article{ZNSL_2021_507_a7,
     author = {A. L. Chistov},
     title = {An effective construction of a small number of equations defining an algebraic variety},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--156},
     year = {2021},
     volume = {507},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - An effective construction of a small number of equations defining an algebraic variety
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 140
EP  - 156
VL  - 507
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/
LA  - ru
ID  - ZNSL_2021_507_a7
ER  - 
%0 Journal Article
%A A. L. Chistov
%T An effective construction of a small number of equations defining an algebraic variety
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 140-156
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/
%G ru
%F ZNSL_2021_507_a7
A. L. Chistov. An effective construction of a small number of equations defining an algebraic variety. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 140-156. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a7/

[1] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | MR | Zbl

[2] A. L. Chistov, “An improvement of the complexity bound for solving systems of polynomial equations”, Zap. nauchn. semin. POMI, 390, 2011, 299–306

[3] A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. I”, Zap. nauchn. semin. POMI, 462, 2017, 122–166

[4] A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. II”, Zap. nauchn. seminarov POMI, 468, 2018, 138–176

[5] A. L. Chistov, “Algoritmy polinomialnoi slozhnosti dlya novoi modeli predstavleniya algebraicheskikh mnogoobrazii”, Zap. nauchn. semin. POMI, 378, 2010, 133–170

[6] A. L. Chistov, “Effektivnoe razlozhenie mnogochlenov s parametricheskimi koeffitsientami na absolyutno neprivodimye mnozhiteli”, Zap. nauchn. semin. POMI, 448, 2016, 286–325

[7] G. E. Collins, “Polynomial remainder sequences and determinants”, Amer. Math. Monthly, 73:7 (1966), 708–712 | DOI | MR | Zbl

[8] L. Kronecker, “Grundzüge einer arithmetischen Theorie der algebraischen Grössen”, J. reine angew. Math., 92 (1882), 1–123 | MR

[9] U. Storch, “Bemerkung zu einem Satz von M. Kneser”, Arch. Math., 23 (1972), 403–404 | DOI | Zbl

[10] D. Eisenbud, E. G. Evans, Jr., “Every algebraic set in $n$-space is the intersection of $n$ hypersurfaces”, Inv. Math., 19 (1973), 107–112 | DOI | Zbl

[11] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985 | Zbl