@article{ZNSL_2021_507_a6,
author = {N. A. Safonkin},
title = {Semifinite harmonic functions on branching graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--139},
year = {2021},
volume = {507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a6/}
}
N. A. Safonkin. Semifinite harmonic functions on branching graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 114-139. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a6/
[1] B. Blackadar, Operator Algebras, Springer-Verlag, Berlin, 2006 | Zbl
[2] A. Borodin, G. Olshanski, Representations of the Infinite Symmetric Group, Cambridge Univ. Press, Cambridge, 2017
[3] R. P. Boyer, “Characters of the infinite symplectic group — a Riesz ring approach”, J. Funct. Anal., 70:2 (1987), 357–387 | DOI | MR | Zbl
[4] R. P. Boyer, “Infinite traces of AF-algebras and characters of ${\rm U}(\infty )$”, J. Operator Theory, 9:2 (1983), 205–236 | MR | Zbl
[5] O. Bratteli, “Inductive limits of finite dimensional $C^*$-algebras”, Trans. Amer. Math. Soc., 171 (1972), 195–234 | MR | Zbl
[6] A. Gnedin, G. Olshanski, “Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, Int. Math. Res. Not., 2006 (2006), 51968 | Zbl
[7] S. Kerov, A. Vershik, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, Gordon and Breach, New York, 1990, 36–114
[8] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003 | Zbl
[9] S. V. Kerov, A. M. Vershik, “Asymptotic theory of the characters of a symmetric group”, Funkts. Anal. Prilozhen., 15:4 (1981), 15–27
[10] S. V. Kerov, A. M. Vershik, “Locally semisimple algebras. Combinatorial theory and the $K_0$-functor”, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, VINITI, M., 1985, 3–56
[11] S. V. Kerov, A. M. Vershik, “The $K$-functor (Grothendieck group) of the infinite symmetric group”, Zap. Nauchn. Semin. LOMI, 123, 1983, 126–151 | Zbl
[12] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not., 1998:4 (1998), 173–199 | DOI | MR | Zbl
[13] K. Matveev, Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture, arXiv: 1711.06939 [math.RT]
[14] N. A. Safonkin, “Semifinite harmonic functions on the Gnedin–Kingman graph”, J. Math. Sci., 255 (2021), 132–142 | DOI | Zbl
[15] R. P. Stanley, Enumerative Combinatorics, v. 1, 2nd edition, Cambridge Univ. Press, Cambridge, 2012 | Zbl
[16] Ş. Strătilă, D. Voiculescu, Representations of AF-Algebras and of the Group $U(\infty)$, Springer-Verlag, Berlin–New York, 1975
[17] A. M. Vershik, P. P. Nikitin, “Description of the characters and factor representations of the infinite symmetric inverse semigroup”, Funct. Anal. Appl., 45:1 (2011), 13–24 | DOI | MR | Zbl
[18] A. J. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. thesis, University of Pennsylvania, 1981 https://repository.upenn.edu/dissertations/AAI8127086/