Semifinite harmonic functions on branching graphs
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 114-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study semifinite harmonic functions on arbitrary branching graphs. We give a detailed exposition of an algebraic method which allows one to classify semifinite indecomposable harmonic functions on some multiplicative branching graphs. It was suggested by A. Wassermann in terms of operator algebras, but we rephrase, clarify, and simplify the main arguments working only with combinatorial objects. This work was inspired by the theory of traceable factor representations of the infinite symmetric group $S(\infty)$.
@article{ZNSL_2021_507_a6,
     author = {N. A. Safonkin},
     title = {Semifinite harmonic functions on branching graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--139},
     year = {2021},
     volume = {507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a6/}
}
TY  - JOUR
AU  - N. A. Safonkin
TI  - Semifinite harmonic functions on branching graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 114
EP  - 139
VL  - 507
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a6/
LA  - en
ID  - ZNSL_2021_507_a6
ER  - 
%0 Journal Article
%A N. A. Safonkin
%T Semifinite harmonic functions on branching graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 114-139
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a6/
%G en
%F ZNSL_2021_507_a6
N. A. Safonkin. Semifinite harmonic functions on branching graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 114-139. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a6/

[1] B. Blackadar, Operator Algebras, Springer-Verlag, Berlin, 2006 | Zbl

[2] A. Borodin, G. Olshanski, Representations of the Infinite Symmetric Group, Cambridge Univ. Press, Cambridge, 2017

[3] R. P. Boyer, “Characters of the infinite symplectic group — a Riesz ring approach”, J. Funct. Anal., 70:2 (1987), 357–387 | DOI | MR | Zbl

[4] R. P. Boyer, “Infinite traces of AF-algebras and characters of ${\rm U}(\infty )$”, J. Operator Theory, 9:2 (1983), 205–236 | MR | Zbl

[5] O. Bratteli, “Inductive limits of finite dimensional $C^*$-algebras”, Trans. Amer. Math. Soc., 171 (1972), 195–234 | MR | Zbl

[6] A. Gnedin, G. Olshanski, “Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, Int. Math. Res. Not., 2006 (2006), 51968 | Zbl

[7] S. Kerov, A. Vershik, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, Gordon and Breach, New York, 1990, 36–114

[8] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003 | Zbl

[9] S. V. Kerov, A. M. Vershik, “Asymptotic theory of the characters of a symmetric group”, Funkts. Anal. Prilozhen., 15:4 (1981), 15–27

[10] S. V. Kerov, A. M. Vershik, “Locally semisimple algebras. Combinatorial theory and the $K_0$-functor”, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, VINITI, M., 1985, 3–56

[11] S. V. Kerov, A. M. Vershik, “The $K$-functor (Grothendieck group) of the infinite symmetric group”, Zap. Nauchn. Semin. LOMI, 123, 1983, 126–151 | Zbl

[12] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not., 1998:4 (1998), 173–199 | DOI | MR | Zbl

[13] K. Matveev, Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture, arXiv: 1711.06939 [math.RT]

[14] N. A. Safonkin, “Semifinite harmonic functions on the Gnedin–Kingman graph”, J. Math. Sci., 255 (2021), 132–142 | DOI | Zbl

[15] R. P. Stanley, Enumerative Combinatorics, v. 1, 2nd edition, Cambridge Univ. Press, Cambridge, 2012 | Zbl

[16] Ş. Strătilă, D. Voiculescu, Representations of AF-Algebras and of the Group $U(\infty)$, Springer-Verlag, Berlin–New York, 1975

[17] A. M. Vershik, P. P. Nikitin, “Description of the characters and factor representations of the infinite symmetric inverse semigroup”, Funct. Anal. Appl., 45:1 (2011), 13–24 | DOI | MR | Zbl

[18] A. J. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. thesis, University of Pennsylvania, 1981 https://repository.upenn.edu/dissertations/AAI8127086/