Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 99-113

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Plancherel measure on irreducible components of tensor powers of the spinor representation of $\mathfrak{so}_{2n+1}$. With respect to this measure, the probability of an irreducible representation is the product of its multiplicity and dimension, divided by the total dimension of the tensor product. We study the limit shape of the highest weight as the tensor power $N$ and the rank $n$ of the algebra tend to infinity with $N/n$ fixed.
@article{ZNSL_2021_507_a5,
     author = {A.A. Nazarov and P. P. Nikitin and O. V. Postnova},
     title = {Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {99--113},
     publisher = {mathdoc},
     volume = {507},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/}
}
TY  - JOUR
AU  - A.A. Nazarov
AU  - P. P. Nikitin
AU  - O. V. Postnova
TI  - Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 99
EP  - 113
VL  - 507
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/
LA  - en
ID  - ZNSL_2021_507_a5
ER  - 
%0 Journal Article
%A A.A. Nazarov
%A P. P. Nikitin
%A O. V. Postnova
%T Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 99-113
%V 507
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/
%G en
%F ZNSL_2021_507_a5
A.A. Nazarov; P. P. Nikitin; O. V. Postnova. Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 99-113. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/