Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 99-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Plancherel measure on irreducible components of tensor powers of the spinor representation of $\mathfrak{so}_{2n+1}$. With respect to this measure, the probability of an irreducible representation is the product of its multiplicity and dimension, divided by the total dimension of the tensor product. We study the limit shape of the highest weight as the tensor power $N$ and the rank $n$ of the algebra tend to infinity with $N/n$ fixed.
@article{ZNSL_2021_507_a5,
     author = {A.A. Nazarov and P. P. Nikitin and O. V. Postnova},
     title = {Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {99--113},
     year = {2021},
     volume = {507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/}
}
TY  - JOUR
AU  - A.A. Nazarov
AU  - P. P. Nikitin
AU  - O. V. Postnova
TI  - Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 99
EP  - 113
VL  - 507
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/
LA  - en
ID  - ZNSL_2021_507_a5
ER  - 
%0 Journal Article
%A A.A. Nazarov
%A P. P. Nikitin
%A O. V. Postnova
%T Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 99-113
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/
%G en
%F ZNSL_2021_507_a5
A.A. Nazarov; P. P. Nikitin; O. V. Postnova. Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 99-113. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/

[1] P. Biane, “Approximate factorization and concentration for characters of symmetric groups”, Int. Math. Res. Not., 2001:4 (2001), 179–192 | DOI | Zbl

[2] P. Biane, “Representations of symmetric groups and free probability”, Adv. Math., 138:1 (1998), 126–181 | DOI | MR | Zbl

[3] A. Borodin, V. Gorin, A. Guionnet, “Gaussian asymptotics of discrete $\beta$-ensembles”, Publ. Math. Inst. Hautes Études Sci., 125, no. 1, 2017, 1–78 | DOI | Zbl

[4] J. Breuer, M. Duits, “Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients”, J. Amer. Math. Soc., 30:1 (2017), 27–66 | DOI | MR | Zbl

[5] P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Amer. Math. Soc., 1999

[6] D. V. Giang, Finite Hilbert transforms logarithmic potentials and singular integral equations, arXiv: 1003.3070

[7] A. Guionnet, Asymptotics of Random Matrices and Related Models: The Uses of Dyson–Schwinger Equations, Amer. Math. Soc., 2019 | Zbl

[8] J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Amer. Math. Soc., 2002 | Zbl

[9] M. Kashiwara, T. Nakashima, “Crystal graphs for representations of the q-analogue of classical Lie algebras”, J. Algebra, 165:2 (1994), 295–345 | DOI | MR | Zbl

[10] S. V. Kerov, “On asymptotic distribution of symmetry types of high rank tensors”, Zap. Nauchn. Semin. POMI, 155, 1986, 181–186 | Zbl

[11] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor powers for non-simply laced Lie algebras $B_2$-case”, J. Phys. Conf. Ser., 346:1 (2012), 012012 | DOI

[12] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity function for tensor powers of modules of the $A_n$ algebra”, Theor. Math. Phys., 171:2 (2012), 666–674 | DOI | Zbl

[13] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity functions for tensor powers. $A_n$-case”, J. Phys. Conf. Ser., 343:1 (2012), 012070 | DOI

[14] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor power decomposition. $B_n$ case”, J. Phys. Conf. Ser., 343:1 (2012), 012095 | DOI

[15] T. Nakashima, “Crystal base and a generalization of the Littlewood–Richardson rule for the classical Lie algebras”, Comm. Math. Phys., 154:2 (1993), 215–243 | DOI | MR | Zbl

[16] A. Nazarov, P. Nikitin, O. Postnova, Limit shape for infinite rank limit of non simply-laced Lie algebras of series $\mathfrak{so}_{2n+1}$, arXiv: 2010.16383

[17] A. A. Nazarov, O. V. Postnova, “The limit shape of a probability measure on a tensor product of modules of the $B_n$ algebra”, J. Math. Sci., 240:5 (2019), 556–566 | DOI | Zbl

[18] O. Postnova, N. Reshetikhin, “On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras”, Lett. Math. Phys., 110 (2020), 147–178 | DOI | MR | Zbl

[19] D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge Univ. Press, 2015 | Zbl

[20] T. Tate, S. Zelditch, “Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers”, J. Funct. Anal., 217:2 (2004), 402–447 | DOI | MR | Zbl