@article{ZNSL_2021_507_a5,
author = {A.A. Nazarov and P. P. Nikitin and O. V. Postnova},
title = {Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {99--113},
year = {2021},
volume = {507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/}
}
TY - JOUR
AU - A.A. Nazarov
AU - P. P. Nikitin
AU - O. V. Postnova
TI - Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2021
SP - 99
EP - 113
VL - 507
UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/
LA - en
ID - ZNSL_2021_507_a5
ER -
%0 Journal Article
%A A.A. Nazarov
%A P. P. Nikitin
%A O. V. Postnova
%T Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 99-113
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/
%G en
%F ZNSL_2021_507_a5
A.A. Nazarov; P. P. Nikitin; O. V. Postnova. Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 99-113. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a5/
[1] P. Biane, “Approximate factorization and concentration for characters of symmetric groups”, Int. Math. Res. Not., 2001:4 (2001), 179–192 | DOI | Zbl
[2] P. Biane, “Representations of symmetric groups and free probability”, Adv. Math., 138:1 (1998), 126–181 | DOI | MR | Zbl
[3] A. Borodin, V. Gorin, A. Guionnet, “Gaussian asymptotics of discrete $\beta$-ensembles”, Publ. Math. Inst. Hautes Études Sci., 125, no. 1, 2017, 1–78 | DOI | Zbl
[4] J. Breuer, M. Duits, “Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients”, J. Amer. Math. Soc., 30:1 (2017), 27–66 | DOI | MR | Zbl
[5] P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Amer. Math. Soc., 1999
[6] D. V. Giang, Finite Hilbert transforms logarithmic potentials and singular integral equations, arXiv: 1003.3070
[7] A. Guionnet, Asymptotics of Random Matrices and Related Models: The Uses of Dyson–Schwinger Equations, Amer. Math. Soc., 2019 | Zbl
[8] J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Amer. Math. Soc., 2002 | Zbl
[9] M. Kashiwara, T. Nakashima, “Crystal graphs for representations of the q-analogue of classical Lie algebras”, J. Algebra, 165:2 (1994), 295–345 | DOI | MR | Zbl
[10] S. V. Kerov, “On asymptotic distribution of symmetry types of high rank tensors”, Zap. Nauchn. Semin. POMI, 155, 1986, 181–186 | Zbl
[11] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor powers for non-simply laced Lie algebras $B_2$-case”, J. Phys. Conf. Ser., 346:1 (2012), 012012 | DOI
[12] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity function for tensor powers of modules of the $A_n$ algebra”, Theor. Math. Phys., 171:2 (2012), 666–674 | DOI | Zbl
[13] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity functions for tensor powers. $A_n$-case”, J. Phys. Conf. Ser., 343:1 (2012), 012070 | DOI
[14] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor power decomposition. $B_n$ case”, J. Phys. Conf. Ser., 343:1 (2012), 012095 | DOI
[15] T. Nakashima, “Crystal base and a generalization of the Littlewood–Richardson rule for the classical Lie algebras”, Comm. Math. Phys., 154:2 (1993), 215–243 | DOI | MR | Zbl
[16] A. Nazarov, P. Nikitin, O. Postnova, Limit shape for infinite rank limit of non simply-laced Lie algebras of series $\mathfrak{so}_{2n+1}$, arXiv: 2010.16383
[17] A. A. Nazarov, O. V. Postnova, “The limit shape of a probability measure on a tensor product of modules of the $B_n$ algebra”, J. Math. Sci., 240:5 (2019), 556–566 | DOI | Zbl
[18] O. Postnova, N. Reshetikhin, “On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras”, Lett. Math. Phys., 110 (2020), 147–178 | DOI | MR | Zbl
[19] D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge Univ. Press, 2015 | Zbl
[20] T. Tate, S. Zelditch, “Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers”, J. Funct. Anal., 217:2 (2004), 402–447 | DOI | MR | Zbl