@article{ZNSL_2021_507_a4,
author = {A. H. Morales and I. Pak and G. Panova},
title = {Hook formulas for skew shapes {IV.} {Increasing} tableaux and factorial {Grothendieck} polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {59--98},
year = {2021},
volume = {507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a4/}
}
TY - JOUR AU - A. H. Morales AU - I. Pak AU - G. Panova TI - Hook formulas for skew shapes IV. Increasing tableaux and factorial Grothendieck polynomials JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 59 EP - 98 VL - 507 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a4/ LA - en ID - ZNSL_2021_507_a4 ER -
A. H. Morales; I. Pak; G. Panova. Hook formulas for skew shapes IV. Increasing tableaux and factorial Grothendieck polynomials. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 59-98. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a4/
[1] H. H. Andersen, J. C. Jantzen, W. Soergel, “Representations of quantum groups at $p$-th root of unity and of semisimple groups in characteristic $p$: independence of $p$”, Astérisque, 220, 1994, 321 pp. | Zbl
[2] S. Billey, “Kostant polynomials and the cohomology ring for $G/B$”, Duke Math. J., 96 (1999), 205–224 | DOI | MR | Zbl
[3] M. Brion, “Lectures on the geometry of flag varieties”, Topics in Cohomological Studies of Algebraic Varieties, Birkhäuser, Basel, 2005, 33–85 | DOI
[4] A. Buch, “A Littlewood–Richardson rule for the $K$-theory of Grassmannians”, Acta Math., 189 (2002), 37–78 | DOI | MR | Zbl
[5] A. Buch, “Combinatorial $K$-theory”, Topics in Cohomological Studies of Algebraic Varieties, Birkhäuser, Basel, 2005, 87–103 | DOI | MR
[6] A. Buch, A. Kresch, M. Shimozono, H. Tamvakis, A. Yong, “Stable Grothendieck polynomials and $K$-theoretic factor sequences”, Math. Ann., 340 (2008), 359–382 | DOI | MR | Zbl
[7] D. Bump, P. J. McNamara, M. Nakasuji, “Factorial Schur functions and the Yang–Baxter equation”, Comment. Math. Univ. St. Pauli, 63 (2014), 23–45 | MR | Zbl
[8] X. Chen, R. P. Stanley, “A formula for the specialization of skew Schur functions”, Ann. Comb., 20 (2016), 539–548 | DOI | MR | Zbl
[9] I. Ciocan-Fontanine, M. Konvalinka, I. Pak, “The weighted hook length formula”, J. Combin. Theory, Ser. A, 118 (2011), 1703–1717 | DOI | MR | Zbl
[10] K. Dilks, O. Pechenik, J. Striker, “Resonance in orbits of plane partitions and increasing tableaux”, J. Combin. Theory, Ser. A, 148 (2017), 244–274 | DOI | MR | Zbl
[11] P. Edelman, C. Greene, “Balanced tableaux”, Adv. Math., 63 (1987), 42–99 | DOI | Zbl
[12] N. J. Y. Fan, P. L. Guo, S. C. C. Sun, “Proof of a conjecture of Reiner–Tenner–Yong on barely set-valued tableaux”, SIAM J. Discrete Math., 33 (2019), 189–196 | DOI | MR | Zbl
[13] S. Fomin, A. N. Kirillov, Yang–Baxter equation, symmetric functions and Grothendieck polynomials, 1993, 25 pp., arXiv: hep-th/9306005
[14] S. Fomin, A. N. Kirillov, “Grothendieck polynomials and the Yang–Baxter equation”, Proc. 6th FPSAC, DIMACS, Piscataway, NJ, 1994, 183–190
[15] S. Fomin, A. N. Kirillov, “Reduced words and plane partitions”, J. Algebraic Combin., 6 (1997), 311–319 | DOI | MR | Zbl
[16] J. S. Frame, G. de B. Robinson, R. M. Thrall, “The hook graphs of the symmetric group”, Canad. J. Math., 6 (1954), 316–324 | DOI | MR | Zbl
[17] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983, 569 pp. | Zbl
[18] W. Graham, V. Kreiman, “Excited Young diagrams and equivariant $K$-theory, and Schubert varieties”, Trans. Amer. Math. Soc., 367 (2015), 6597–6645 | DOI | MR | Zbl
[19] C. Greene, A. Nijenhuis, H. S. Wilf, “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. Math., 31 (1979), 104–109 | DOI | MR | Zbl
[20] Z. Hamaker, R. Patrias, O. Pechenik, N. Williams, “Doppelgängers: bijections of plane partitions”, Int. Math. Res. Not., 2020:2 (2020), 487–540 | DOI | MR | Zbl
[21] Z. Hamaker, A. H. Morales, I. Pak, L. Serrano, N. Williams, Bijecting hidden symmetries for skew staircase shapes, 2021, 19 pp., arXiv: 2103.09551 | Zbl
[22] Z. Hamaker, B. Young, “Relating Edelman–Greene insertion to the Little map”, J. Algebraic Combin., 40 (2014), 693–710 | DOI | MR | Zbl
[23] B. H. Hwang, J. S. Kim, M. Yoo, S. M. Yun, “Reverse plane partitions of skew staircase shapes and $q$-{E}uler numbers”, J. Combin. Theory, Ser. A, 168 (2019), 120–163 | DOI | MR | Zbl
[24] T. Ikeda, H. Naruse, “Excited Young diagrams and equivariant Schubert calculus”, Trans. Amer. Math. Soc., 361 (2009), 5193–5221 | DOI | MR | Zbl
[25] T. Ikeda, H. Naruse, “$K$-theoretic analogues of factorial Schur $P$- and $Q$-functions”, Adv. Math., 243 (2013), 22–66 | DOI | MR | Zbl
[26] V. Kreiman, Schubert classes in the equivariant $K$-theory and equivariant cohomology of the Grassmannian, 2005, 27 pp., arXiv: math.AG/0512204 | Zbl
[27] A. Knutson, E. Miller, “Gröbner geometry of Schubert polynomials”, Ann. Math., 161 (2005), 1245–1318 | DOI | MR | Zbl
[28] A. Knutson, E. Miller, A. Yong, “Gröbner geometry of vertex decompositions and of flagged tableaux”, J. Reine Angew. Math., 630 (2009), 1–31 | DOI | MR | Zbl
[29] M. Konvalinka, “A bijective proof of the hook-length formula for skew shapes”, European J. Combin., 88 (2020), 103104, 14 pp. | DOI | MR | Zbl
[30] T. Lam, S. J. Lee, M. Shimozono, “Back stable Schubert calculus”, Compos. Math., 157 (2021), 883–962 | DOI | MR | Zbl
[31] A. Lascoux, M.-P. Schützenberger, “Polynômes de Schubert”, C. R. Acad. Sci. Paris, 294:13 (1982), 447–450 | MR | Zbl
[32] A. Lascoux, M.-P. Schützenberger, “Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux”, C. R. Acad. Sci. Paris, 295:11 (1982), 629–633 | MR | Zbl
[33] C. Lenart, A. Postnikov, “Affine Weyl groups in $K$-theory and representation theory”, Int. Math. Res. Not., 2007:12 (2007), rnm038, 65 pp. | Zbl
[34] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, 2nd edition, Oxford Univ. Press, New York, 310 pp.
[35] I. G. Macdonald, “Schur functions: theme and variations”, Publ. Inst. Rech. Math. Av., 498, Univ. Louis Pasteur, Strasbourg, 1992, 5–39
[36] L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, Amer. Math. Soc., Providence, RI, 2001, 167 pp. | Zbl
[37] P. J. McNamara, “Factorial Grothendieck polynomials”, Electron. J. Combin., 13:1 (2006), RP 71, 40 pp. | DOI
[38] P. J. McNamara, Addendum to Factorial Grothendieck polynomials, 2011, 2 pp. ; http://petermc.net/maths/papers/fgpaddendum.pdftinyurl.com/3dfs7e9s
[39] A. I. Molev, B. E. Sagan, “A Littlewood–Richardson rule for factorial Schur functions”, Trans. Amer. Math. Soc., 351 (1999), 4429–4443 | DOI | MR | Zbl
[40] C. Monical, B. Pankow, A. Yong, Reduced word enumeration, complexity, and randomization, 2019, 23 pp., arXiv: 1901.03247
[41] A. H. Morales, I. Pak, G. Panova, “Hook formulas for skew shapes I. $q$-analogues and bijections”, J. Combin. Theory, Ser. A, 154 (2018), 350–405 | DOI | MR | Zbl
[42] A. H. Morales, I. Pak, G. Panova, “Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications”, SIAM J. Discrete Math., 31 (2017), 1953–1989 | DOI | MR | Zbl
[43] A. H. Morales, I. Pak, G. Panova, “Hook formulas for skew shapes III. Multivariate and product formulas”, Algebr. Comb., 2 (2019), 815–861 | MR | Zbl
[44] A. H. Morales, I. Pak, G. Panova, “Asymptotics of principal evaluations of Schubert polynomials for layered permutations”, Proc. Amer. Math. Soc., 147 (2019), 1377–1389 | DOI | MR | Zbl
[45] A. H. Morales, D. G. Zhu, On the Okounkov–Olshanski formula for standard tableaux of skew shapes, 2020, 36 pp., arXiv: 2007.05006
[46] H. Naruse, “Schubert calculus and hook formula”, 73rd Sém. Lothar. Combin. (Strobl, Austria, 2014), 6 pp. https://www.emis.de/journals/SLC/wpapers/s73vortrag/naruse.pdf
[47] H. Naruse, S. Okada, “Skew hook formula for $d$-complete posets via equivariant $K$-theory”, Algebr. Comb., 2 (2019), 541–571 | MR | Zbl
[48] J.-C. Novelli, I. Pak, A. V. Stoyanovskii, “A direct bijective proof of the hook-length formula”, Discrete Math. Theor. Comput. Sci., 1 (1997), 53–67 | DOI | MR | Zbl
[49] A. Okounkov, G. Olshanski, “Shifted Schur functions”, St. Petersburg Math. J., 9 (1998), 239–300 | MR
[50] I. Pak, “Hook length formula and geometric combinatorics”, Sém. Lothar. Combin., 46 (2001), B46f, 13 pp. | Zbl
[51] I. Pak, “Skew shape asymptotics, a case-based introduction”, Sém. Lothar. Combin., 84 (2021), B84a, 26 pp.
[52] I. Pak, F. Petrov, “Hidden symmetries of weighted lozenge tilings”, Electron. J. Combin., 27 (2020), #P3.44, 18 pp. | DOI | Zbl
[53] O. Pechenik, “Cyclic sieving of increasing tableaux and small Schröder paths”, J. Combin. Theory, Ser. A, 125 (2014), 357–378 | DOI | MR | Zbl
[54] O. Pechenik, Minuscule analogues of the plane partition periodicity conjecture of Cameron and Fon-Der-Flaass, 2021, 15 pp., arXiv: 2107.02679
[55] O. Pechenik, A. Yong, “Equivariant $K$-theory of Grassmannians”, Forum Math. Pi, 5 (2017), e3, 128 pp. | DOI | MR | Zbl
[56] T. Pressey, A. Stokke, T. Visentin, “Increasing tableaux, Narayana numbers and an instance of the cyclic sieving phenomenon”, Ann. Comb., 20 (2016), 609–621 | DOI | MR | Zbl
[57] V. Reiner, B. Tenner, A. Yong, “Poset edge densities, nearly reduced words, and barely set-valued tableaux”, J. Combin. Theory, Ser. A, 158 (2018), 66–125 | DOI | MR | Zbl
[58] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org
[59] R. P. Stanley, Enumerative Combinatorics, v. 1, 2nd edition, Cambridge Univ. Press, 2012, 626 pp. ; v. 2, 1999, 581 pp. | Zbl
[60] R. P. Stanley, Some Schubert shenanigans, 2017, 9 pp., arXiv: 1704.00851
[61] R. A. Sulanke, “The Narayana distribution”, J. Statist. Plann. Inference, 101 (2002), 311–326 | DOI | MR | Zbl
[62] H. Thomas, A. Yong, “A jeu de taquin theory for increasing tableaux, with applications to $K$-theoretic Schubert calculus”, Algebra Number Theory, 3 (2009), 121–148 | DOI | MR | Zbl
[63] H. Thomas, A. Yong, “Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm”, Adv. Appl. Math., 46 (2011), 610–642 | DOI | Zbl
[64] H. Thomas, A. Yong, “Equivariant Schubert calculus and jeu de taquin”, Ann. Inst. Fourier (Grenoble), 68 (2018), 275–318 | DOI | MR | Zbl
[65] A. Weigandt, “Bumpless pipe dreams and alternating sign matrices”, J. Combin. Theory, Ser. A, 182 (2021), 105470, 52 pp. | DOI | MR | Zbl