A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 35-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present a local combinatorial formula for the Euler class of an $n$-dimensional PL spherical fiber bundle as a rational number $e_{CH}$ associated to a chain of $n+1$ abstract subdivisions of abstract $n$-spherical PL cell complexes. The number $e_{CH}$ is a combinatorial (or matrix) Hodge-theoretic twisting cochain in Guy Hirsch's homology model of the bundle associated with the PL combinatorics of the bundle.
@article{ZNSL_2021_507_a3,
     author = {N. E. Mn\"ev},
     title = {A note on a local combinatorial formula for the {Euler} class of a {PL} spherical fiber bundle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--58},
     year = {2021},
     volume = {507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/}
}
TY  - JOUR
AU  - N. E. Mnëv
TI  - A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 35
EP  - 58
VL  - 507
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/
LA  - en
ID  - ZNSL_2021_507_a3
ER  - 
%0 Journal Article
%A N. E. Mnëv
%T A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 35-58
%V 507
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/
%G en
%F ZNSL_2021_507_a3
N. E. Mnëv. A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 35-58. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/

[1] B. Akyar, J. L. Dupont, “Lattice gauge field theory and prismatic sets”, Math. Scand., 108:1 (2011), 26–54 | DOI | MR | Zbl

[2] L. Berg, “Three results in connection with inverse matrices”, Linear Algebra Appl., 84 (1986), 63–77 | DOI | MR | Zbl

[3] N. A. Berikašvili, “Differentials of a spectral sequence”, Proc. A. Razmadze Math. Inst., 51 (1976), 5–106

[4] N. Berikashvili, “A local system of spaces and a bigraded model of fibration”, Georgian Math. J., 13:4 (2006), 649–658 | DOI | MR | Zbl

[5] A. Björner, “Posets, regular CW complexes and Bruhat order”, European J. Combin., 5:1 (1984), 7–16 | DOI | MR

[6] E. H. Brown, Jr., “Twisted tensor products. I”, Ann. Math. (2), 69 (1959), 223–246 | DOI | MR | Zbl

[7] M. J. Catanzaro, V. Y. Chernyak, J. R. Klein, Kirchhoff's theorems in higher dimensions and Reidemeister torsion, arXiv: 1206.6783

[8] M. J. Catanzaro, V. Y. Chernyak, J. R. Klein, A higher Boltzmann distribution, arXiv: 1506.06775

[9] M. J. Catanzaro, V. Y. Chernyak, J. R. Klein, “A higher Boltzmann distribution”, J. Appl. Comput. Topol., 1:2 (2017), 215–240 | DOI | MR | Zbl

[10] Sh. Chern, E. H. Spanier, “The homology structure of sphere bundles”, Proc. Nat. Acad. Sci. USA, 36 (1950), 248–255 | DOI | Zbl

[11] M. M. Cohen, “Simplicial structures and transverse cellularity”, Ann. Math. (2), 85 (1967), 218–245 | DOI | MR | Zbl

[12] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger Operators, With Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin, 1987 | Zbl

[13] A. Dress, “Zur Spektralsequenz von Faserungen”, Invent. Math., 3 (1967), 172–178 | DOI | MR | Zbl

[14] A. M. Duval, C. J. Klivans, J. L. Martin, “Cuts and flows of cell complexes”, J. Algebraic Combin., 41:4 (2015), 969–999 | DOI | MR | Zbl

[15] E. Fadell, W. Hurewicz, “On the structure of higher differential operators in spectral sequences”, Ann. Math. (2), 68 (1958), 314–347 | DOI | MR | Zbl

[16] A. A. Gaĭfullin, “Computation of characteristic classes of a manifold from its triangulation”, Uspekhi Mat. Nauk, 60:4(364) (2005), 37–66 | DOI | MR

[17] I. M. Gelfand, R. D. MacPherson, “A combinatorial formula for the Pontrjagin classes”, Bull. Amer. Math. Soc. New Ser., 26:2 (1992), 304–309 | DOI | MR | Zbl

[18] V. K. A. M. Gugenheim, “On a perturbation theory for the homology of the loop-space”, J. Pure Appl. Algebra, 25 (1982), 197–205 | DOI | MR | Zbl

[19] V. K. A. M. Gugenheim, L. A. Lambe, “Perturbation theory in differential homological algebra. I”, Illinois J. Math., 33:4 (1989), 566–582 | DOI | MR | Zbl

[20] G. Hirsch, “Sur les groupes d'homologie des espaces fibrés”, Bull. Soc. Math. Belg., 6 (1954), 79–96 | Zbl

[21] K. Igusa, “Combinatorial Miller–Morita–Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4 (2004), 473–520 | DOI | MR | Zbl

[22] K. Igusa, “Twisting cochains and higher torsion”, J. Homotopy Relat. Struct., 6:2 (2011), 213–238 | MR | Zbl

[23] T. V. Kadeishvili, “The predifferential of a twisted product”, Russian Math. Surveys, 41:6 (1986), 135–147 | DOI | Zbl

[24] N. Levitt, “The Euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes”, Discrete Comput. Geom., 7:1 (1992), 59–67 | DOI | MR | Zbl

[25] A. Lundell, S. Weingram, The Topology of CW-Complexes, Van Nostrand Reinhold, New York, 1969 | Zbl

[26] R. Lyons, “Random complexes and \(\ell^2\)-Betti numbers”, J. Topol. Anal., 1:2 (2009), 153–175 | DOI | MR | Zbl

[27] N. E. Mnëv, “Combinatorial piecewise-linear Steenrod fiber bundles and the fragmentation of a fiberwise homeomorphism”, Zap. Nauchn. Semin. POMI, 344 (2007), 56–173

[28] N. Mnev, G. Sharygin, “On local combinatorial formulas for Chern classes of a triangulated circle bundle”, J. Math. Sci., 224:2 (2017), 304–327 | DOI | MR | Zbl

[29] L. I. Nicolaescu, The Reidemeister Torsion of $3$-Manifolds, Walter de Gruyter, Berlin, 2003 | Zbl

[30] M. Roček, R. M. Williams, “On the {E}uler characteristic for piecewise linear manifolds”, Phys. Lett. B, 273:1–2 (1991), 95–99 | MR

[31] C. P. Rourke, B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, Berlin, 1972 | Zbl

[32] N. E. Steenrod, “Cohomology invariants of mappings”, Ann. Math. (2), 50 (1949), 954–988 | DOI | MR | Zbl

[33] R. Thom, “Espaces fibrés en sphères et carrés de Steenrod”, Ann. Sci. École Norm. Sup. (3), 69 (1952), 109–182 | DOI | Zbl