A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 35-58

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a local combinatorial formula for the Euler class of an $n$-dimensional PL spherical fiber bundle as a rational number $e_{CH}$ associated to a chain of $n+1$ abstract subdivisions of abstract $n$-spherical PL cell complexes. The number $e_{CH}$ is a combinatorial (or matrix) Hodge-theoretic twisting cochain in Guy Hirsch's homology model of the bundle associated with the PL combinatorics of the bundle.
@article{ZNSL_2021_507_a3,
     author = {N. E. Mn\"ev},
     title = {A note on a local combinatorial formula for the {Euler} class of a {PL} spherical fiber bundle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--58},
     publisher = {mathdoc},
     volume = {507},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/}
}
TY  - JOUR
AU  - N. E. Mnëv
TI  - A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 35
EP  - 58
VL  - 507
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/
LA  - en
ID  - ZNSL_2021_507_a3
ER  - 
%0 Journal Article
%A N. E. Mnëv
%T A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 35-58
%V 507
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/
%G en
%F ZNSL_2021_507_a3
N. E. Mnëv. A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 35-58. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a3/