A generalized Maxwell--Poincar\'e lemma and Wishart measures
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 15-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We get a series of degenerate Wishart measures on the space of infinite Hermitian matrices by directly passing to a limit of a sequence of orbital invariant measures on the Stiefel manifold.
@article{ZNSL_2021_507_a1,
     author = {A. M. Vershik and F. V. Petrov},
     title = {A generalized {Maxwell--Poincar\'e} lemma and {Wishart} measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {507},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - F. V. Petrov
TI  - A generalized Maxwell--Poincar\'e lemma and Wishart measures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 15
EP  - 25
VL  - 507
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a1/
LA  - ru
ID  - ZNSL_2021_507_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A F. V. Petrov
%T A generalized Maxwell--Poincar\'e lemma and Wishart measures
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 15-25
%V 507
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a1/
%G ru
%F ZNSL_2021_507_a1
A. M. Vershik; F. V. Petrov. A generalized Maxwell--Poincar\'e lemma and Wishart measures. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Tome 507 (2021), pp. 15-25. http://geodesic.mathdoc.fr/item/ZNSL_2021_507_a1/